메뉴 건너뛰기




Volumn 24, Issue 5, 2007, Pages 825-833

Uniqueness of the critical mass blow up solution for the four dimensional gravitational Vlasov-Poisson system

Author keywords

[No Author keywords available]

Indexed keywords

CONVERGENCE OF NUMERICAL METHODS; GRAVITATIONAL EFFECTS; NONLINEAR EQUATIONS; PROBLEM SOLVING; SCHRODINGER EQUATION;

EID: 34547562119     PISSN: 02941449     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.anihpc.2006.07.003     Document Type: Article
Times cited : (4)

References (24)
  • 1
    • 14944362548 scopus 로고    scopus 로고
    • 2 minimal periodic blow-up solutions of critical nonlinear Schrödinger equation
    • 2 minimal periodic blow-up solutions of critical nonlinear Schrödinger equation. Differential Integral Equations 15 6 (2002) 749-768
    • (2002) Differential Integral Equations , vol.15 , Issue.6 , pp. 749-768
    • Antonini, C.1
  • 2
    • 28444487069 scopus 로고    scopus 로고
    • Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain
    • Banica V. Remarks on the blow-up for the Schrödinger equation with critical mass on a plane domain. Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 1 (2004) 139-170
    • (2004) Ann. Sc. Norm. Super. Pisa Cl. Sci. , vol.3 , Issue.1 , pp. 139-170
    • Banica, V.1
  • 3
    • 0001138905 scopus 로고
    • Stationary spherically symmetric models in stellar dynamics
    • Batt J., Faltenbacher W., and Horst E. Stationary spherically symmetric models in stellar dynamics. Arch. Rational Mech. Anal. 93 (1986) 159-183
    • (1986) Arch. Rational Mech. Anal. , vol.93 , pp. 159-183
    • Batt, J.1    Faltenbacher, W.2    Horst, E.3
  • 4
    • 0020591567 scopus 로고
    • Nonlinear scalar field equations. I. Existence of a ground state
    • Berestycki H., and Lions P.-L. Nonlinear scalar field equations. I. Existence of a ground state. Arch. Rational Mech. Anal. 82 4 (1983) 313-345
    • (1983) Arch. Rational Mech. Anal. , vol.82 , Issue.4 , pp. 313-345
    • Berestycki, H.1    Lions, P.-L.2
  • 6
    • 0038238334 scopus 로고    scopus 로고
    • Two singular dynamics of the nonlinear Schrödinger equation on a plane domain
    • Burq N., Gérard P., and Tzvetkov N. Two singular dynamics of the nonlinear Schrödinger equation on a plane domain. Geom. Funct. Anal. 13 1 (2003) 1-19
    • (2003) Geom. Funct. Anal. , vol.13 , Issue.1 , pp. 1-19
    • Burq, N.1    Gérard, P.2    Tzvetkov, N.3
  • 7
    • 42749104980 scopus 로고    scopus 로고
    • Statistical mechanics and thermodynamic limit of self-gravitating fermions in D dimensions
    • Chavanis P.-H. Statistical mechanics and thermodynamic limit of self-gravitating fermions in D dimensions. Phys. Rev. E 69 (2004) 066126
    • (2004) Phys. Rev. E , vol.69 , pp. 066126
    • Chavanis, P.-H.1
  • 9
    • 0000445095 scopus 로고
    • Solutions globales d'équations du type Vlasov-Poisson
    • Diperna R.J., and Lions P.-L. Solutions globales d'équations du type Vlasov-Poisson. C. R. Acad. Sci. Paris Sér. I Math. 307 12 (1988) 655-658
    • (1988) C. R. Acad. Sci. Paris Sér. I Math. , vol.307 , Issue.12 , pp. 655-658
    • Diperna, R.J.1    Lions, P.-L.2
  • 11
    • 0003940944 scopus 로고    scopus 로고
    • Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA
    • Glassey R. The Cauchy Problem in Kinetic Theory (1996), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA
    • (1996) The Cauchy Problem in Kinetic Theory
    • Glassey, R.1
  • 12
    • 28444450137 scopus 로고    scopus 로고
    • Blowup theory for the critical nonlinear Schrödinger equations revisited
    • Hmidi T., and Keraani S. Blowup theory for the critical nonlinear Schrödinger equations revisited. Int. Math. Res. Not. 46 (2005) 2815-2828
    • (2005) Int. Math. Res. Not. , vol.46 , pp. 2815-2828
    • Hmidi, T.1    Keraani, S.2
  • 13
    • 0021303282 scopus 로고
    • Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation
    • Horst E., and Hunze R. Weak solutions of the initial value problem for the unmodified nonlinear Vlasov equation. Math. Methods Appl. Sci. 6 2 (1984) 262-279
    • (1984) Math. Methods Appl. Sci. , vol.6 , Issue.2 , pp. 262-279
    • Horst, E.1    Hunze, R.2
  • 15
    • 23844527828 scopus 로고    scopus 로고
    • On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system
    • Lemou M., Méhats F., and Raphael P. On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system. C. R. Math. Acad. Sci. Paris, Ser. I 341 4 (2005) 269-274
    • (2005) C. R. Math. Acad. Sci. Paris, Ser. I , vol.341 , Issue.4 , pp. 269-274
    • Lemou, M.1    Méhats, F.2    Raphael, P.3
  • 16
    • 84995321565 scopus 로고    scopus 로고
    • M. Lemou, F. Méhats, P. Raphael, On the orbital stability of the ground states and the singularity formation for the gravitational Vlasov Poisson system, preprint
  • 17
    • 85030707196 scopus 로고
    • The concentration-compactness principle in the calculus of variations. The locally compact case. I
    • Lions P.-L. The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 2 (1984) 109-145
    • (1984) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.1 , Issue.2 , pp. 109-145
    • Lions, P.-L.1
  • 18
    • 0001515315 scopus 로고
    • Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system
    • Lions P.-L., and Perthame B. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105 2 (1991)
    • (1991) Invent. Math. , vol.105 , Issue.2
    • Lions, P.-L.1    Perthame, B.2
  • 19
    • 0036872989 scopus 로고    scopus 로고
    • 2-mass for the critical gKdV equation
    • 2-mass for the critical gKdV equation. Duke Math. J. 115 2 (2002) 385-408
    • (2002) Duke Math. J. , vol.115 , Issue.2 , pp. 385-408
    • Martel, Y.1    Merle, F.2
  • 20
    • 0036000529 scopus 로고    scopus 로고
    • Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation
    • Martel Y., and Merle F. Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation. Ann. of Math. (2) 155 1 (2002) 235-280
    • (2002) Ann. of Math. (2) , vol.155 , Issue.1 , pp. 235-280
    • Martel, Y.1    Merle, F.2
  • 21
    • 84974001368 scopus 로고
    • Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power
    • Merle F. Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power. Duke Math. J. 69 2 (1993) 427-454
    • (1993) Duke Math. J. , vol.69 , Issue.2 , pp. 427-454
    • Merle, F.1
  • 22
    • 0030353240 scopus 로고    scopus 로고
    • 2 minimal blow-up solutions of critical nonlinear Schrödinger equation
    • 2 minimal blow-up solutions of critical nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 5 (1996) 553-565
    • (1996) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.13 , Issue.5 , pp. 553-565
    • Merle, F.1
  • 23
    • 2942586742 scopus 로고    scopus 로고
    • 2 critical nonlinear Schrödinger equation
    • 2 critical nonlinear Schrödinger equation. Invent. Math. 156 (2004) 565-672
    • (2004) Invent. Math. , vol.156 , pp. 565-672
    • Merle, F.1    Raphaël, P.2
  • 24
    • 0041473959 scopus 로고
    • Nonlinear Schrödinger equations and sharp interpolation estimates
    • Weinstein M.I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1983) 567-576
    • (1983) Comm. Math. Phys. , vol.87 , pp. 567-576
    • Weinstein, M.I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.