-
2
-
-
34547561981
-
-
Specific anomers of a nucleoside X are given the descriptors α- or β- in the form of a prefix. In the case of nucleotides, the site of nucleoside phosphorylation is additionally indicated by a suffix -n′-P, (or X-2′,3′-cP in the case of nucleoside-2′,3′-cyclic phosphates). For the sake of clarity, furanose and pyranose isomers, and 2′-epimers of a nucleoside/nucleotide are given different compound numbers. However, β-D-ribose-2- phosphate, for which the furanose-pyranose isomerisation is rapid in neutral aqueous solution, is given a single number: 49.
-
Specific anomers of a nucleoside X are given the descriptors α- or β- in the form of a prefix. In the case of nucleotides, the site of nucleoside phosphorylation is additionally indicated by a suffix -n′-P, (or X-2′,3′-cP in the case of nucleoside-2′,3′-cyclic phosphates). For the sake of clarity, furanose and pyranose isomers, and 2′-epimers of a nucleoside/nucleotide are given different compound numbers. However, β-D-ribose-2- phosphate, for which the furanose-pyranose isomerisation is rapid in neutral aqueous solution, is given a single number: 49.
-
-
-
-
4
-
-
19944415654
-
-
It has been shown more recently that ribose can be made in 19% yield by the aldolisation of glycolaldehyde and glyceraldehyde catalysed by the zinc-proline complex: J. Kofoed, J.-L. Reymond, T. Darbre, Org. Biomol. Chem. 2005, 3, 1850. However, it is produced as a component of a complex and intractable mixture including the tetroses, aldo- and ketohexoses, and the other pentoses
-
It has been shown more recently that ribose can be made in 19% yield by the aldolisation of glycolaldehyde and glyceraldehyde catalysed by the zinc-proline complex: J. Kofoed, J.-L. Reymond, T. Darbre, Org. Biomol. Chem. 2005, 3, 1850. However, it is produced as a component of a complex and intractable mixture including the tetroses, aldo- and ketohexoses, and the other pentoses.
-
-
-
-
5
-
-
0029111395
-
-
R. Larralde, M. P. Robertson, S. L. Miller, Proc. Natl. Acad. Sci. USA 1995, 92, 8158.
-
(1995)
Proc. Natl. Acad. Sci. USA
, vol.92
, pp. 8158
-
-
Larralde, R.1
Robertson, M.P.2
Miller, S.L.3
-
6
-
-
34547576741
-
-
C. Anastasi, M. A. Crowe, M. W. Powner, J. D. Sutherland, Angew. Chem. 2006, 118, 6322;
-
(2006)
Angew. Chem
, vol.118
, pp. 6322
-
-
Anastasi, C.1
Crowe, M.A.2
Powner, M.W.3
Sutherland, J.D.4
-
7
-
-
33749038680
-
-
Angew. Chem. Int. Ed. 2006, 45, 6176.
-
(2006)
Chem. Int. Ed
, vol.45
, pp. 6176
-
-
Angew1
-
9
-
-
33846038278
-
-
C. Anastasi, M. A. Crowe, J. D. Sutherland, J. Am. Chem. Soc. 2007, 129, 24.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 24
-
-
Anastasi, C.1
Crowe, M.A.2
Sutherland, J.D.3
-
10
-
-
0014852887
-
The phosphorylation of α-2 using cyclic trimetaphosphate and sodium hydroxide has been described: R. Saffhill
-
The phosphorylation of α-2 using cyclic trimetaphosphate and sodium hydroxide has been described: R. Saffhill, J. Org. Chem. 1970, 35, 2881.
-
(1970)
J. Org. Chem
, vol.35
, pp. 2881
-
-
-
11
-
-
0015211212
-
-
The reaction proceeds through α-2-2′,3′-cP and gives α-2-2′-P and α-2-3′-P in high yield, but the strongly alkaline conditions required raise doubts about the prebiotic plausibility of this reaction. Under more credible prebiotic conditions, β-2 is converted to mixtures that contain β-2-2′, 3′-cP (>30% yield after 24 h) and β-2-5′-P (>20% yield after 4 h) as the major phosphorylation products after heating with inorganic phosphate, urea and ammonium salts in the dry state: R. Lohrmann, L E. Orgel, Science 1971, 171, 490.
-
The reaction proceeds through α-2-2′,3′-cP and gives α-2-2′-P and α-2-3′-P in high yield, but the strongly alkaline conditions required raise doubts about the prebiotic plausibility of this reaction. Under more credible prebiotic conditions, β-2 is converted to mixtures that contain β-2-2′, 3′-cP (>30% yield after 24 h) and β-2-5′-P (>20% yield after 4 h) as the major phosphorylation products after heating with inorganic phosphate, urea and ammonium salts in the dry state: R. Lohrmann, L E. Orgel, Science 1971, 171, 490.
-
-
-
-
12
-
-
34547597332
-
-
2O.
-
2O.
-
-
-
-
13
-
-
1842391071
-
-
J. Kovacs, I. Pinter, U. Lendering, P. Koell, Carbohydr. Res. 1991, 210, 155.
-
(1991)
Carbohydr. Res
, vol.210
, pp. 155
-
-
Kovacs, J.1
Pinter, I.2
Lendering, U.3
Koell, P.4
-
14
-
-
33847483971
-
-
S. Y. Wang, M. Apicella, B. R. Stone, J. Am. Chem. Soc. 1956, 78, 4180.
-
(1956)
J. Am. Chem. Soc
, vol.78
, pp. 4180
-
-
Wang, S.Y.1
Apicella, M.2
Stone, B.R.3
-
15
-
-
85025354343
-
-
H. E. Johns, J. C. LeBlanc, K. B. Freeman, J. Mol. Biol. 1965, 13, 849.
-
(1965)
J. Mol. Biol
, vol.13
, pp. 849
-
-
Johns, H.E.1
LeBlanc, J.C.2
Freeman, K.B.3
-
16
-
-
0014937073
-
-
G. Deboer, O. Klinghoffer, H. E. Johns, Biochim. Biophys. Acta 1970, 213, 253.
-
(1970)
Biochim. Biophys. Acta
, vol.213
, pp. 253
-
-
Deboer, G.1
Klinghoffer, O.2
Johns, H.E.3
-
20
-
-
34547597906
-
-
a of the ureas suggests that they would be poor leaving groups at neutral pH.
-
a of the ureas suggests that they would be poor leaving groups at neutral pH.
-
-
-
-
21
-
-
33947469046
-
-
In the case of uridines, the 1,4-addition of water to the conjugated enone system of the uracil moiety has been suggested: S. Y. Wang, J. Am. Chem. Soc. 1958, 80, 6196
-
In the case of uridines, the 1,4-addition of water to the conjugated enone system of the uracil moiety has been suggested: S. Y. Wang, J. Am. Chem. Soc. 1958, 80, 6196.
-
-
-
-
24
-
-
0345826095
-
-
S. Pitsch, S. Wendeborn, R. Krishnamurthy, A. Holzner, M. Minton, M. Bolli, C. Miculka, N. Windhab, R. Micura, M. Stanek, B. Jaun, A. Eschenmoser, Helv. Chim. Acta 2003, 86, 4270.
-
(2003)
Helv. Chim. Acta
, vol.86
, pp. 4270
-
-
Pitsch, S.1
Wendeborn, S.2
Krishnamurthy, R.3
Holzner, A.4
Minton, M.5
Bolli, M.6
Miculka, C.7
Windhab, N.8
Micura, R.9
Stanek, M.10
Jaun, B.11
Eschenmoser, A.12
-
25
-
-
34547582815
-
-
CCDC 636363 (β-19) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac. uk/data_request/cif
-
CCDC 636363 (β-19) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac. uk/data_request/cif
-
-
-
-
26
-
-
0023018017
-
-
J. A. Kelley, J. S. Driscoll, J. J. McCormack, J. S. Roth, V. E. Marquez, J. Med. Chem. 1986, 29, 2351.
-
(1986)
J. Med. Chem
, vol.29
, pp. 2351
-
-
Kelley, J.A.1
Driscoll, J.S.2
McCormack, J.J.3
Roth, J.S.4
Marquez, V.E.5
-
27
-
-
0141619288
-
-
T-X. Xiang, R. Niemi, P. Bummer, B. D. Anderson, J. Pharm. Sci. 2003, 92, 2027.
-
(2003)
J. Pharm. Sci
, vol.92
, pp. 2027
-
-
Xiang, T.-X.1
Niemi, R.2
Bummer, P.3
Anderson, B.D.4
-
30
-
-
17944401513
-
-
S. Pitsch, C. Spinner, K. Atsumi, P. Ermert, Chimia 1999, 53, 291.
-
(1999)
Chimia
, vol.53
, pp. 291
-
-
Pitsch, S.1
Spinner, C.2
Atsumi, K.3
Ermert, P.4
-
31
-
-
0000580186
-
-
J-C. Wu, H. Bazin, J. Chattopadhyaya, Tetrahedron 1987, 43, 2355.
-
(1987)
Tetrahedron
, vol.43
, pp. 2355
-
-
Wu, J.-C.1
Bazin, H.2
Chattopadhyaya, J.3
|