-
1
-
-
0001161521
-
Testing symmetry of an unknown density function by kernel method
-
Ahman, I. A. and Li, Q. (1997). Testing symmetry of an unknown density function by kernel method. Nonparametr. Statist. 7, 279-293.
-
(1997)
Nonparametr. Statist
, vol.7
, pp. 279-293
-
-
Ahman, I.A.1
Li, Q.2
-
2
-
-
51249181876
-
Asymptotic distribution of a Cramér-von-Mises type statistic for testing symmetry when the center is estimated
-
Aki, S. (1981). Asymptotic distribution of a Cramér-von-Mises type statistic for testing symmetry when the center is estimated. Ann. Inst. Statist. Math. 33, 1-14.
-
(1981)
Ann. Inst. Statist. Math
, vol.33
, pp. 1-14
-
-
Aki, S.1
-
3
-
-
0035457247
-
Nonparametric estimation of the residual distribution
-
Akritas, M. and Van Keilegom, I. (2001). Nonparametric estimation of the residual distribution. Scan. J. Statist. 28, 549-567.
-
(2001)
Scan. J. Statist
, vol.28
, pp. 549-567
-
-
Akritas, M.1
Van Keilegom, I.2
-
4
-
-
0001577539
-
Two modified Wilcoxon tests for symmetry about an unknown location parameter
-
Bhattacharya, P. K., Gastwirth, J. L. and Wright, A. L. (1982). Two modified Wilcoxon tests for symmetry about an unknown location parameter. Biometrika 69, 377-382.
-
(1982)
Biometrika
, vol.69
, pp. 377-382
-
-
Bhattacharya, P.K.1
Gastwirth, J.L.2
Wright, A.L.3
-
5
-
-
0036796524
-
Testing symmetry in nonparametric regression models
-
Dette, H., Kusi-Appiah, S. and Neumeyer, N. (2002). Testing symmetry in nonparametric regression models. Nonparametr. Statist. 14, 477-494.
-
(2002)
Nonparametr. Statist
, vol.14
, pp. 477-494
-
-
Dette, H.1
Kusi-Appiah, S.2
Neumeyer, N.3
-
7
-
-
21344496537
-
Comparing nonparametric versus parametric regression fits
-
Hardie, W. and Mammen, E. (1993). Comparing nonparametric versus parametric regression fits. Ann. Statist. 21, 1926-1947.
-
(1993)
Ann. Statist
, vol.21
, pp. 1926-1947
-
-
Hardie, W.1
Mammen, E.2
-
8
-
-
0000429550
-
Testing for symmetry
-
Edited by N. L. Johnson, S. Kotz
-
Hollander, M. (1988). Testing for symmetry. In Encycl. Statist. Sci. 9 (Edited by N. L. Johnson, S. Kotz), 211-216.
-
(1988)
Encycl. Statist. Sci
, vol.9
, pp. 211-216
-
-
Hollander, M.1
-
9
-
-
0002116638
-
Hypothesis of symmetry
-
Nonparametric methods, North Holland, Amsterdam
-
Huškova, M. (1984). Hypothesis of symmetry. In Handbook of Statistics, 4, Nonparametric methods, 63-78. North Holland, Amsterdam.
-
(1984)
Handbook of Statistics
, vol.4
, pp. 63-78
-
-
Huškova, M.1
-
10
-
-
0036626446
-
Nonparametric estimation and symmetry tests for conditional density functions
-
Hyndman, R. J. and Yao, Q. (2002). Nonparametric estimation and symmetry tests for conditional density functions. Nonparametr. Statist. 14, 259-278,
-
(2002)
Nonparametr. Statist
, vol.14
, pp. 259-278
-
-
Hyndman, R.J.1
Yao, Q.2
-
11
-
-
34547504323
-
Power bounds for a Smirnov statistic in testing the hypothesis of symmetry
-
Koul, H. L. and Staudte Jr., R. G. (1976). Power bounds for a Smirnov statistic in testing the hypothesis of symmetry. Ann. Statist. 4, 924-935.
-
(1976)
Ann. Statist
, vol.4
, pp. 924-935
-
-
Koul, H.L.1
Staudte Jr., R.G.2
-
13
-
-
0344356148
-
A note on testing symmetry with estimated parameters
-
Koziol, J. A. (1985). A note on testing symmetry with estimated parameters. Statist. Probab. Lett. 3, 227-230.
-
(1985)
Statist. Probab. Lett
, vol.3
, pp. 227-230
-
-
Koziol, J.A.1
-
14
-
-
0000712557
-
Bootstrap procedures under some non-i.i.d. models
-
Liu, R. Y. (1988). Bootstrap procedures under some non-i.i.d. models. Ann. Statist. 16, 1696-1708.
-
(1988)
Ann. Statist
, vol.16
, pp. 1696-1708
-
-
Liu, R.Y.1
-
15
-
-
0000570384
-
On non-parametric estimates of density functions and regression curves
-
Nadaraya, E. A. (1964). On non-parametric estimates of density functions and regression curves. J. Probab. Appl. 10, 186-190.
-
(1964)
J. Probab. Appl
, vol.10
, pp. 186-190
-
-
Nadaraya, E.A.1
-
16
-
-
0037311243
-
A bootstrap test for symmetry of dependent data based on a Komogorov Smirnov type statistic. Comm. Statist, Ser. B, Simul. 8
-
Psaradakis, Z. (2003). A bootstrap test for symmetry of dependent data based on a Komogorov Smirnov type statistic. Comm. Statist, Ser. B, Simul. 8 Comput. 32, 113-126.
-
(2003)
Comput
, vol.32
, pp. 113-126
-
-
Psaradakis, Z.1
-
17
-
-
0000006440
-
Bandwidth choice for nonparametric regression
-
Rice, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12, 1215-1230.
-
(1984)
Ann. Statist
, vol.12
, pp. 1215-1230
-
-
Rice, J.1
-
18
-
-
0012947994
-
Using the bootstrap in testing symmetry versus asymmetry
-
Schuster, E. F. and Berger, R. G. (1987). Using the bootstrap in testing symmetry versus asymmetry. Comm. Statist, Ser. B, Simul. & Comput 16, 69-84.
-
(1987)
Comm. Statist, Ser. B, Simul. & Comput
, vol.16
, pp. 69-84
-
-
Schuster, E.F.1
Berger, R.G.2
-
19
-
-
3042680962
-
Sur un critère de symétrie de la loi de distribution d'une variable aléatoire
-
Smirnov, N. V. (1947). Sur un critère de symétrie de la loi de distribution d'une variable aléatoire. C. R. (Doklady) Acad. Sci. URSS (N.S.) 56, 11-14.
-
(1947)
C. R. (Doklady) Acad. Sci. URSS (N.S.)
, vol.56
, pp. 11-14
-
-
Smirnov, N.V.1
-
22
-
-
0001762424
-
Smooth Regression Analysis
-
Watson, G. S. (1964). Smooth Regression Analysis. Sankhyā A 26, 359-372.
-
(1964)
Sankhyā A
, vol.26
, pp. 359-372
-
-
Watson, G.S.1
-
23
-
-
0001673027
-
Jackknife, bootstrap and other resampling methods in regression analysis
-
Wu, C-F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. Ann. Statist. 14, 1261-1350.
-
(1986)
Ann. Statist
, vol.14
, pp. 1261-1350
-
-
Wu, C.-F.J.1
|