-
1
-
-
34547435459
-
-
T. Alazard, R. Carles, Sequential loss of regularity for super-critical nonlinear Schrödinger equations, Preprint
-
-
-
-
2
-
-
34547488662
-
-
N. Burq, P. Gérard, S. Ibrahim, Instability results for nonlinear Schrödinger and wave equations, Preprint
-
-
-
-
3
-
-
12144282712
-
Bilinear estimates and the nonlinear Schödinger equation on surfaces
-
Burq N., Gérard P., and Tzvetkov N. Bilinear estimates and the nonlinear Schödinger equation on surfaces. Inven. Math. 159 (2005) 187-223
-
(2005)
Inven. Math.
, vol.159
, pp. 187-223
-
-
Burq, N.1
Gérard, P.2
Tzvetkov, N.3
-
4
-
-
34547460832
-
-
M. Christ, J. Colliander, T. Tao, Ill-posedness for nonlinear Schrödinger and wave equations, http://arxiv.org/ps/math.AP/0311048.pdf
-
-
-
-
5
-
-
0000890194
-
The global Cauchy problem for nonlinear Klein-Gordon equation
-
Ginibre J., and Velo G. The global Cauchy problem for nonlinear Klein-Gordon equation. Math. Z 189 (1985) 487-505
-
(1985)
Math. Z
, vol.189
, pp. 487-505
-
-
Ginibre, J.1
Velo, G.2
-
6
-
-
0003000536
-
The global Cauchy problem for the critical nonlinear wave equation
-
Ginibre J., Soffer A., and Velo G. The global Cauchy problem for the critical nonlinear wave equation. J. Funct. Anal. 110 (1992) 96-130
-
(1992)
J. Funct. Anal.
, vol.110
, pp. 96-130
-
-
Ginibre, J.1
Soffer, A.2
Velo, G.3
-
7
-
-
33749341214
-
Global solutions for a semilinear 2D Klein-Gordon equation with exponential type nonlinearity
-
Ibrahim S., Majdoub M., and Masmoudi N. Global solutions for a semilinear 2D Klein-Gordon equation with exponential type nonlinearity. Commun. Pure Appl. Math. 59 11 (2006) 1639-1658
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, Issue.11
, pp. 1639-1658
-
-
Ibrahim, S.1
Majdoub, M.2
Masmoudi, N.3
-
8
-
-
34547404385
-
-
S. Ibrahim, M. Majdoub, N. Masmoudi, On the well-posedness of some NLW and NLS equations, in preparation
-
-
-
-
9
-
-
0001442617
-
On the ill-posedness of some canonical dispersive equations
-
Kenig C., Ponce G., and Vega L. On the ill-posedness of some canonical dispersive equations. Duke Math. J. 106 3 (2001) 617-633
-
(2001)
Duke Math. J.
, vol.106
, Issue.3
, pp. 617-633
-
-
Kenig, C.1
Ponce, G.2
Vega, L.3
-
10
-
-
0035738686
-
Nonlinear optics and supercritical wave equation
-
Lebeau G. Nonlinear optics and supercritical wave equation. Bull. Soc. R. Sci. Liège 70 4-6 (2001) 267-306
-
(2001)
Bull. Soc. R. Sci. Liège
, vol.70
, Issue.4-6
, pp. 267-306
-
-
Lebeau, G.1
-
11
-
-
19844365174
-
Perte de régularuté pour l'équation des ondes surcritique
-
Lebeau G. Perte de régularuté pour l'équation des ondes surcritique. Bull. Soc. Math. France 133 (2005) 145-157
-
(2005)
Bull. Soc. Math. France
, vol.133
, pp. 145-157
-
-
Lebeau, G.1
-
12
-
-
0001173833
-
A sharp form of an inequality of N. Trudinger
-
Moser J. A sharp form of an inequality of N. Trudinger. Indiana Univ. Math. J. 20 (1971) 1077-1092
-
(1971)
Indiana Univ. Math. J.
, vol.20
, pp. 1077-1092
-
-
Moser, J.1
-
13
-
-
0033468098
-
Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth
-
Nakamura M., and Ozawa T. Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth. Math. Z. 231 (1999) 479-487
-
(1999)
Math. Z.
, vol.231
, pp. 479-487
-
-
Nakamura, M.1
Ozawa, T.2
-
14
-
-
0033481360
-
The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order
-
Nakamura M., and Ozawa T. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete and Continuous Dynamical Systems 5 1 (1999) 215-231
-
(1999)
Discrete and Continuous Dynamical Systems
, vol.5
, Issue.1
, pp. 215-231
-
-
Nakamura, M.1
Ozawa, T.2
-
15
-
-
84962991958
-
Well-posedness in the energy space for semilinear wave equation with critical growth
-
Shatah J., and Struwe M. Well-posedness in the energy space for semilinear wave equation with critical growth. IMRN 7 (1994) 303-309
-
(1994)
IMRN
, vol.7
, pp. 303-309
-
-
Shatah, J.1
Struwe, M.2
-
18
-
-
34249855088
-
Global regularity for a logarithmically supercritical defocussing nonlinear wave equation for spherically symmetric data
-
Tao T. Global regularity for a logarithmically supercritical defocussing nonlinear wave equation for spherically symmetric data. J. Hyperbolic Diff. Eq. 4 (2007) 259-266
-
(2007)
J. Hyperbolic Diff. Eq.
, vol.4
, pp. 259-266
-
-
Tao, T.1
|