메뉴 건너뛰기




Volumn 76, Issue 1, 2007, Pages

Crystal growth in a three-phase system: Diffusion and liquid-liquid phase separation in lysozyme crystal growth

Author keywords

[No Author keywords available]

Indexed keywords

BOUNDARY CONDITIONS; CRYSTAL GROWTH; DROPS; OPTICAL MICROSCOPY; PHASE DIAGRAMS;

EID: 34547467102     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.76.011604     Document Type: Article
Times cited : (19)

References (24)
  • 1
    • 0001118365 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.39.474
    • C. Ishimoto and T. Tanaka, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.39.474 39, 474 (1977).
    • (1977) Phys. Rev. Lett. , vol.39 , pp. 474
    • Ishimoto, C.1    Tanaka, T.2
  • 5
    • 0031559476 scopus 로고    scopus 로고
    • JCPSA6 0021-9606 10.1063/1.474547
    • M. Muschol and F. Rosenberger, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.474547 107, 1953 (1997).
    • (1997) J. Chem. Phys. , vol.107 , pp. 1953
    • Muschol, M.1    Rosenberger, F.2
  • 8
    • 4143146536 scopus 로고    scopus 로고
    • CGDEFU 1528-7483 10.1021/cg049977w
    • P. G. Vekilov, Cryst. Growth Des. CGDEFU 1528-7483 10.1021/cg049977w 4, 671 (2004).
    • (2004) Cryst. Growth Des. , vol.4 , pp. 671
    • Vekilov, P.G.1
  • 9
    • 41349110585 scopus 로고    scopus 로고
    • PLEEE8 1063-651X 10.1103/PhysRevE.65.051804
    • S. Tanaka, M. Ataka, and K. Ito, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.65.051804 65, 051804 (2002).
    • (2002) Phys. Rev. e , vol.65 , pp. 051804
    • Tanaka, S.1    Ataka, M.2    Ito, K.3
  • 17
    • 34547462321 scopus 로고    scopus 로고
    • MATLAB 6.5 (Release 13), The MathWorks, Inc.
    • MATLAB 6.5 (Release 13), The MathWorks, Inc.
  • 18
    • 0029540627 scopus 로고
    • JCPSA6 0021-9606 10.1063/1.469891
    • M. Muschol and F. Rosenberger, J. Chem. Phys. JCPSA6 0021-9606 10.1063/1.469891 103, 10424 (1995).
    • (1995) J. Chem. Phys. , vol.103 , pp. 10424
    • Muschol, M.1    Rosenberger, F.2
  • 24
    • 34547433971 scopus 로고    scopus 로고
    • We assume the crystal to fill completely the vertical space in the growth cell. Finite elements calculations show that the concentration profile qualitatively remains the same when the crystal does not completely fill the vertical space. The effect on the boundary conditions is that we have an effective β′ =β hcrystal hcell.
    • We assume the crystal to fill completely the vertical space in the growth cell. Finite elements calculations show that the concentration profile qualitatively remains the same when the crystal does not completely fill the vertical space. The effect on the boundary conditions is that we have an effective β′ =βhcrystal hcell.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.