메뉴 건너뛰기




Volumn 4463 LNBI, Issue , 2007, Pages 170-181

An empirical comparison of dimensionality reduction methods for classifying gene and protein expression datasets

Author keywords

Bioinformatics; Classification; Dimensionality reduction; Gene expression; Graph embedding; Isomap; Linear discriminant analysis; Lung cancer; Multidimensional scaling; Ovarian cancer; Principal component analysis; Prostate cancer; Proteomics

Indexed keywords

BIOINFORMATICS; CLASSIFICATION (OF INFORMATION); GENE EXPRESSION; ONCOLOGY; PRINCIPAL COMPONENT ANALYSIS; PROTEINS;

EID: 34547463049     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-72031-7_16     Document Type: Conference Paper
Times cited : (14)

References (19)
  • 1
    • 33646181069 scopus 로고    scopus 로고
    • A novel ensemble machine learning for robust microarray data classification
    • Peng Y. A novel ensemble machine learning for robust microarray data classification. Comput Biol Med. 2006, vol.36[6], pp.553-73.
    • (2006) Comput Biol Med , vol.36 , Issue.6 , pp. 553-573
    • Peng, Y.1
  • 2
    • 84856999267 scopus 로고    scopus 로고
    • Shi C and Chen L. Feature Dimension Reduction for Microarray Data Analysis Using Locally Linear Embedding. APBC 2005. pp.211-217.
    • Shi C and Chen L. Feature Dimension Reduction for Microarray Data Analysis Using Locally Linear Embedding. APBC 2005. pp.211-217.
  • 3
    • 14744274588 scopus 로고    scopus 로고
    • Using Uncorrelated Discriminant Analysis for Tissue Classification with Gene Expression Data. IEEE/ACM Trans. Comput
    • Ye J et al. Using Uncorrelated Discriminant Analysis for Tissue Classification with Gene Expression Data. IEEE/ACM Trans. Comput. Biology Bioinform. 2004, vol.1 [6], pp.181-190.
    • (2004) Biology Bioinform , vol.1 , Issue.6 , pp. 181-190
    • Ye, J.1
  • 4
    • 2942596534 scopus 로고    scopus 로고
    • Ensemble machine learning on gene expression data for cancer classification
    • Tan AC and Gilbert D. Ensemble machine learning on gene expression data for cancer classification. Applied Bioinformatics. 2003, pp.65-83.
    • (2003) Applied Bioinformatics , pp. 65-83
    • Tan, A.C.1    Gilbert, D.2
  • 5
    • 33646383088 scopus 로고    scopus 로고
    • Dimension Reduction for Classification with Gene Expression Microarray Data
    • Dai J et al. Dimension Reduction for Classification with Gene Expression Microarray Data. Statistical Applications in Genetics and Mol Biol. 2006, vol.5[1]: pp.1-15
    • (2006) Statistical Applications in Genetics and Mol Biol , vol.5 , Issue.1 , pp. 1-15
    • Dai, J.1
  • 6
    • 33744803217 scopus 로고    scopus 로고
    • Graph Embedding to Improve Supervised Classification and Novel Class Detection: Application to Prostate Cancer
    • Madabhushi A et al. Graph Embedding to Improve Supervised Classification and Novel Class Detection: Application to Prostate Cancer. MICCAI 2005. pp.729-737.
    • (2005) MICCAI , pp. 729-737
    • Madabhushi, A.1
  • 7
    • 0034704229 scopus 로고    scopus 로고
    • A Global Geometric Framework for Nonlinear Dimensionality Reduction
    • Tenenbaum JB et al. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science. 2000, vol.290, pp.2319-2322.
    • (2000) Science , vol.290 , pp. 2319-2322
    • Tenenbaum, J.B.1
  • 8
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear Dimensionality Reduction by Local Linear Embedding
    • Roweis ST and Saul LK. Nonlinear Dimensionality Reduction by Local Linear Embedding. Science. 2000, vol.290, pp.2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 9
    • 25444512607 scopus 로고    scopus 로고
    • Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm
    • Dawson K et al. Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm. BMC Bioinformatics. 2005, vol.6, pp.195.
    • (2005) BMC Bioinformatics , vol.6 , pp. 195
    • Dawson, K.1
  • 10
    • 2342431962 scopus 로고    scopus 로고
    • Approximate geodesic distances reveal biologically relevant structures in microarray data
    • Nilsson J et al. Approximate geodesic distances reveal biologically relevant structures in microarray data. Bioinformatics. 2004, vol.20, pp.874-880.
    • (2004) Bioinformatics , vol.20 , pp. 874-880
    • Nilsson, J.1
  • 11
    • 33750734660 scopus 로고    scopus 로고
    • Madabhushi A et al. Comparing Classification Performance of Feature Ensembles: Detecting Prostate Cancer from High Resolution MRI, Computer Vision Methods in Medical Image Analysis (In conjunction with ECCV). 2006, LNCS 4241, pp. 25-36.
    • Madabhushi A et al. Comparing Classification Performance of Feature Ensembles: Detecting Prostate Cancer from High Resolution MRI, Computer Vision Methods in Medical Image Analysis (In conjunction with ECCV). 2006, LNCS 4241, pp. 25-36.
  • 12
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999, vol.286, pp.531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 13
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by geneexpression profiling and supervised machine learning
    • Shipp MA et al. Diffuse large B-cell lymphoma outcome prediction by geneexpression profiling and supervised machine learning. Nat Med. 2002, vol.8, pp. 68-74.
    • (2002) Nat Med , vol.8 , pp. 68-74
    • Shipp, M.A.1
  • 14
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • Gordon GJ et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Res. 2002, vol.62, pp.4963-4967.
    • (2002) Cancer Res , vol.62 , pp. 4963-4967
    • Gordon, G.J.1
  • 15
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression Profiles Predict Survival of Patients with Lung Adenocarcinoma
    • Beer D et al. Gene-expression Profiles Predict Survival of Patients with Lung Adenocarcinoma. Nature Medicine. 2002, vol.8[8], pp.816-823.
    • (2002) Nature Medicine , vol.8 , Issue.8 , pp. 816-823
    • Beer, D.1
  • 16
    • 0037116832 scopus 로고    scopus 로고
    • Use of proteomic patterns in serum to identify ovarian cancer
    • Petricoin EF et al. Use of proteomic patterns in serum to identify ovarian cancer. The Lancet. 2002, vol.359[9306], pp.572-577
    • (2002) The Lancet , vol.359 , Issue.9306 , pp. 572-577
    • Petricoin, E.F.1
  • 17
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh D et al. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002, vol.1, pp.203-209.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1
  • 18
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh AA et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000, vol.403, pp.503-511.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1
  • 19
    • 19044399684 scopus 로고    scopus 로고
    • Classification, Subtype Discovery, and Prediction of Outcome in Pediatric Acute Lymphoblastic Leukemia by Gene Expression Profiling
    • Yeoh EJ, et al. Classification, Subtype Discovery, and Prediction of Outcome in Pediatric Acute Lymphoblastic Leukemia by Gene Expression Profiling. Cancer Cell. 2002, vol.1 [2], pp.133-143.
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 133-143
    • Yeoh, E.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.