메뉴 건너뛰기




Volumn 4544 LNBI, Issue , 2007, Pages 204-214

Inferring gene regulatory networks from multiple data sources via a dynamic Bayesian network with structural em

Author keywords

Dynamic Bayesian network; Gene regulatory networks; Microarray data; Structural expectation maximization; Transcription factor binding location data

Indexed keywords

BAYESIAN NETWORKS; LEARNING SYSTEMS; RNA; YEAST;

EID: 34547450013     PISSN: 03029743     EISSN: 16113349     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-73255-6_17     Document Type: Conference Paper
Times cited : (25)

References (27)
  • 1
    • 33644783926 scopus 로고    scopus 로고
    • Imoto, S., Higuchi, T., Goto, T., Miyano, S.: Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks.Statistical Methodology, pp. 1-16 (2006)
    • Imoto, S., Higuchi, T., Goto, T., Miyano, S.: Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks.Statistical Methodology, pp. 1-16 (2006)
  • 2
    • 0031616241 scopus 로고    scopus 로고
    • REVEAL: A general reverse engineering algorithm for inference of genetic network architectures
    • Liang, S., Fuhrman, S., Somoyi, R.: REVEAL: a general reverse engineering algorithm for inference of genetic network architectures. In: Proc. Pacific Symposium on Biocomputing, pp. 18-29 (1998)
    • (1998) Proc. Pacific Symposium on Biocomputing , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somoyi, R.3
  • 8
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Proc. Pacific Symposium on Biocomputing, pp. 175-186 (2002)
    • (2002) Proc. Pacific Symposium on Biocomputing , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 9
    • 34547491599 scopus 로고    scopus 로고
    • Segal, E., Yelensky, R., Koller, D.: From Promoter Sequence to Expression: A Probabilistic Framework.Bioinformatics, pp. 273C282 (2003)
    • Segal, E., Yelensky, R., Koller, D.: From Promoter Sequence to Expression: A Probabilistic Framework.Bioinformatics, pp. 273C282 (2003)
  • 10
    • 34547480689 scopus 로고    scopus 로고
    • From promoter sequence to expression: A probabilistic framework
    • Bar-Joseph, Z., et al.: From promoter sequence to expression: A probabilistic framework. Nature Biotechnology, pp. 1337C1341 (2003)
    • (2003) Nature Biotechnology , vol.C1341 , pp. 1337
    • Bar-Joseph, Z.1
  • 11
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatiory networks from multiple types of data
    • Bernard, A., Hartemink, A.: Informative structure priors: Joint learning of dynamic regulatiory networks from multiple types of data. In: Proc. Pacific Symposium on Biocomputing, pp. 459-470 (2005)
    • (2005) Proc. Pacific Symposium on Biocomputing , pp. 459-470
    • Bernard, A.1    Hartemink, A.2
  • 12
    • 0034785443 scopus 로고    scopus 로고
    • Regulatory networks by combinatorial analysis of promoter elements
    • Pilpel, Y., Sudarsanam, P., Church, G.M.: Regulatory networks by combinatorial analysis of promoter elements. Nature Genetics, pp. 153-162 (2001)
    • (2001) Nature Genetics , pp. 153-162
    • Pilpel, Y.1    Sudarsanam, P.2    Church, G.M.3
  • 13
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combing Bayesian network model with promoter element detection
    • Tamada, Y., Kim, S., Bannai, H., Imoto, S., Tashiro, K., Kuhara, S., Miyano, S.: Estimating gene networks from gene expression data by combing Bayesian network model with promoter element detection. Bioinformatics, pp. 227-236 (2003)
    • (2003) Bioinformatics , pp. 227-236
    • Tamada, Y.1    Kim, S.2    Bannai, H.3    Imoto, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 14
    • 2442718023 scopus 로고    scopus 로고
    • Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian network
    • Nariai, N., Kim, S., Imoto, S., Miyano, S.: Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian network. In: Proc. Pacific Symposium on Biocomputing, pp. 336-347 (2004)
    • (2004) Proc. Pacific Symposium on Biocomputing , pp. 336-347
    • Nariai, N.1    Kim, S.2    Imoto, S.3    Miyano, S.4
  • 15
    • 14644401169 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks from time-series microarray data
    • Li, S.P., Tseng, J.J., Wang, S.C.: Reconstructing gene regulatory networks from time-series microarray data. Physica, pp. 63-69 (2005)
    • (2005) Physica , pp. 63-69
    • Li, S.P.1    Tseng, J.J.2    Wang, S.C.3
  • 17
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics, pp. 2271-2282 (2003)
    • (2003) Bioinformatics , pp. 2271-2282
    • Husmeier, D.1
  • 19
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • Kim, S., Imoto, S., Miyano, S.: Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Biosystems, pp. 57-65 (2004)
    • (2004) Biosystems , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 20
  • 22
    • 0037174671 scopus 로고    scopus 로고
    • Transcriptional Regulatory Networks in Saccharomyces cerevisiae
    • Lee, T., et al.: Transcriptional Regulatory Networks in Saccharomyces cerevisiae. Science, pp. 799-804 (2002)
    • (2002) Science , pp. 799-804
    • Lee, T.1
  • 23
    • 34547490508 scopus 로고    scopus 로고
    • Home page of KEGG: http://www.genome.ad.jp/kegg
    • Home page of KEGG: http://www.genome.ad.jp/kegg
  • 24
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics, pp. 3594-3603 (2004)
    • (2004) Bioinformatics , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 26
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks
    • Gevaert, O., Smet, F.D., Timmerman, D., Moreau, Y., Moor, B.D.: Predicting the prognosis of breast cancer by integrating clinical and microarray data with bayesian networks Bioinformatics, pp. e184-e190 (2006)
    • (2006) Bioinformatics
    • Gevaert, O.1    Smet, F.D.2    Timmerman, D.3    Moreau, Y.4    Moor, B.D.5
  • 27
    • 0004286947 scopus 로고    scopus 로고
    • The Unscented Particle Filter
    • Technical Report, Cambridge University Engineering Department
    • Merwe, R., Doucet, A., Freitas, N., Wan, E.: The Unscented Particle Filter. Technical Report, Cambridge University Engineering Department (2000)
    • (2000)
    • Merwe, R.1    Doucet, A.2    Freitas, N.3    Wan, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.