-
1
-
-
0014601369
-
Some results on quasicyclic codes
-
C. L. Chen, W. W. Peterson and E. J. Weldon, "Some results on quasicyclic codes," Inform. Control, Vol. 15, no. 5, pp. 407-423, 1969.
-
(1969)
Inform. Control
, vol.15
, Issue.5
, pp. 407-423
-
-
Chen, C.L.1
Peterson, W.W.2
Weldon, E.J.3
-
2
-
-
0026628587
-
New lower bounds for minimum distance of linear quasi-cyclic and almost linear cyclic codes
-
V. V. Chepyzhov, "New lower bounds for minimum distance of linear quasi-cyclic and almost linear cyclic codes," Problemy Peredachi Informatsii, Vol. 28, no 1, pp. 39-51, 1992.
-
(1992)
Problemy Peredachi Informatsii
, vol.28
, Issue.1
, pp. 39-51
-
-
Chepyzhov, V.V.1
-
4
-
-
0001287361
-
A comparison of signalling alphabets
-
E. N. Gilbert, " A comparison of signalling alphabets", Bell. Sys. Tech. J., 31, pp. 504-522, 1952.
-
(1952)
Bell. Sys. Tech. J
, vol.31
, pp. 504-522
-
-
Gilbert, E.N.1
-
5
-
-
3943069786
-
Asymptotic improvement of the GilbertVarshamov bound on the size of binary codes
-
T. Jiang and A. Vardy, "Asymptotic improvement of the GilbertVarshamov bound on the size of binary codes," IEEE Trans. Inf. Theory, Vol. 50, no. 8, pp. 1655-1664, 2004.
-
(2004)
IEEE Trans. Inf. Theory
, vol.50
, Issue.8
, pp. 1655-1664
-
-
Jiang, T.1
Vardy, A.2
-
6
-
-
39049140831
-
On the existence of good cyclic almost linear codes over non prime fields
-
G. A. Kabatiyanskii, "On the existence of good cyclic almost linear codes over non prime fields", Problemy Peredachi Informatsii, Vol. 13, no 3, pp. 18-21, 1977.
-
(1977)
Problemy Peredachi Informatsii
, vol.13
, Issue.3
, pp. 18-21
-
-
Kabatiyanskii, G.A.1
-
7
-
-
84910486314
-
New binary coding results by circulant
-
M. Karlin, " New binary coding results by circulant", IEEE Trans. Inform. Theory 15, pp. 81-92, 1969.
-
(1969)
IEEE Trans. Inform. Theory
, vol.15
, pp. 81-92
-
-
Karlin, M.1
-
8
-
-
0016100966
-
A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2
-
T. Kasami, "A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2," IEEE Trans. Inf. Theory, Vol. 20, no. 5, pp. 679-679, 1974.
-
(1974)
IEEE Trans. Inf. Theory
, vol.20
, Issue.5
, pp. 679-679
-
-
Kasami, T.1
-
9
-
-
4544375373
-
-
M. Krivelevich, S. Litsyn, A. Vardy, A lower bound on the density of sphere packings via graph theory, Int. Math. Res. Not, no. 43, 22712279, 2004.
-
M. Krivelevich, S. Litsyn, A. Vardy, "A lower bound on the density of sphere packings via graph theory", Int. Math. Res. Not, no. 43, 22712279, 2004.
-
-
-
-
10
-
-
39049135447
-
On codes with prescribed group of symmetry
-
E. Krouk, "On codes with prescribed group of symmetry," Voprosy Kibernetiki, Vol. 34, pp. 105-112, 1977.
-
(1977)
Voprosy Kibernetiki
, vol.34
, pp. 105-112
-
-
Krouk, E.1
-
11
-
-
39049105252
-
On the existence of good quasi-cyclic codes
-
St-Petersburg, Russia, june
-
E. Krouk and S. Semenov, "On the existence of good quasi-cyclic codes," proc. of 7th joint Swedish-Russian International Workshop on Information Theory, St-Petersburg, Russia, june 1995, pp. 164-166.
-
(1995)
proc. of 7th joint Swedish-Russian International Workshop on Information Theory
, pp. 164-166
-
-
Krouk, E.1
Semenov, S.2
-
13
-
-
84859625236
-
Modular curves, Shimura curves and Goppa codes better than Varshamov-Gilbert bound
-
M. A. Tsfasman, S.G. Vladuts and Zink, "Modular curves, Shimura curves and Goppa codes better than Varshamov-Gilbert bound", Math. Nach., 104, pp. 13-28, 1982.
-
(1982)
Math. Nach
, vol.104
, pp. 13-28
-
-
Tsfasman, M.A.1
Vladuts, S.G.2
Zink3
-
14
-
-
0000479182
-
Estimate of the number of signals in error-correcting codes
-
in Russian
-
R.R. Varshamov, "Estimate of the number of signals in error-correcting codes", Dokl. Acad. Nauk, 117, pp. 739-741, 1957 (in Russian).
-
(1957)
Dokl. Acad. Nauk
, vol.117
, pp. 739-741
-
-
Varshamov, R.R.1
-
15
-
-
26444610674
-
Improving the Gilbert-Varshamov bound for q-ary codes
-
V. Vu and L. Wu, "Improving the Gilbert-Varshamov bound for q-ary codes", IEEE Trans. Inf. Theo., 51 (9), pp. 3200-3208, 2005
-
(2005)
IEEE Trans. Inf. Theo
, vol.51
, Issue.9
, pp. 3200-3208
-
-
Vu, V.1
Wu, L.2
|