-
1
-
-
0004118981
-
The NIDES statistical component: Description and justification
-
SRI International, Computer Science Laboratory
-
Javits, H. S. and Valdes, A. "The NIDES statistical component: Description and justification". Technical Rep. SRI International, Computer Science Laboratory. 1993
-
(1993)
Technical Rep
-
-
Javits, H.S.1
Valdes, A.2
-
2
-
-
0038324607
-
-
SPADE
-
SPADE, Silicon Defense, http://www.silicondefense.com/sonware/spice
-
Silicon Defense
-
-
-
3
-
-
85084160308
-
A study in using neural networks for anomaly and misuse detection
-
A. Ghosh and A. Schwartzbard, "A study in using neural networks for anomaly and misuse detection", USENIX Security Symposium, 1999
-
(1999)
USENIX Security Symposium
-
-
Ghosh, A.1
Schwartzbard, A.2
-
4
-
-
4544229404
-
ADAM: Detecting intrusions by data mining
-
Jun
-
D. Barbara, J. Couto, S. Jajodia, L. Popyack, and N. Wu. "ADAM: Detecting intrusions by data mining". In Proc. of the IEEE Workshop on Information Assurance and Security, Jun. 2001.
-
(2001)
Proc. of the IEEE Workshop on Information Assurance and Security
-
-
Barbara, D.1
Couto, J.2
Jajodia, S.3
Popyack, L.4
Wu, N.5
-
6
-
-
32844462055
-
Detecting Novel Network Intrusions Using Bayes Estimators
-
Chicago, IL
-
D. Barbara, N. Wu, S. Jajodia, Detecting Novel Network Intrusions Using Bayes Estimators, First SIAM Conference on Data Mining, Chicago, IL, 2001.
-
(2001)
First SIAM Conference on Data Mining
-
-
Barbara, D.1
Wu, N.2
Jajodia, S.3
-
7
-
-
2942640996
-
Data Mining for Network Intrusion Detection
-
Baltimore, MD, November
-
Dokas, P., Ertoz, L., Kumar, V., Lazarevic, A., Srivastava, J., Tan, P.: Data Mining for Network Intrusion Detection, Proc. NSF Workshop on Next Generation Data Mining, Baltimore, MD, November 2002.
-
(2002)
Proc. NSF Workshop on Next Generation Data Mining
-
-
Dokas, P.1
Ertoz, L.2
Kumar, V.3
Lazarevic, A.4
Srivastava, J.5
Tan, P.6
-
8
-
-
0009304541
-
A Bayesian approach to filtering junk e-mail. In: Learning for Text Categorization: Papers from the AAAI Workshop, Madison Wisconsin
-
WS-98-05
-
Sahami, M., Dumais, S., Heckerman, D., Horvitz, E.: A Bayesian approach to filtering junk e-mail. In: Learning for Text Categorization: Papers from the AAAI Workshop, Madison Wisconsin, AAAI Press (1998) 55-62 Technical Report WS-98-05.
-
AAAI Press (1998) 55-62 Technical Report
-
-
Sahami, M.1
Dumais, S.2
Heckerman, D.3
Horvitz, E.4
-
9
-
-
0043157171
-
Learning to filter spam e-mail: A comparison of a Naive Bayesian and a memory-based approach
-
Zaragoza, H, Gallinari, P, Rajman, M, eds, Lyon, France
-
Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Sakkis, G., Spyropoulos, C.D., Stamatopoulos, P.: Learning to filter spam e-mail: A comparison of a Naive Bayesian and a memory-based approach. In Zaragoza, H., Gallinari, P., Rajman, M., eds.: Proc. Workshop on Machine Learning and Textual Information Access, 4th European Conference on Principles and Practice of Knowledge Discovery in Databases, Lyon, France 1-13, 2000
-
(2000)
Proc. Workshop on Machine Learning and Textual Information Access, 4th European Conference on Principles and Practice of Knowledge Discovery in Databases
, pp. 1-13
-
-
Androutsopoulos, I.1
Paliouras, G.2
Karkaletsis, V.3
Sakkis, G.4
Spyropoulos, C.D.5
Stamatopoulos, P.6
-
10
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one-loss
-
Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier under zero-one-loss. Machine Learning, vol. 29, pp.103-130, 1997.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
11
-
-
0034838197
-
Data mining methods for detection of new malicious executables
-
S & P, May
-
Schultz, M., Eskin, E., and Zadok, E. Data mining methods for detection of new malicious executables. In IEEE Symposium on Security and Privacy (IEEE S & P 2001), May 2001.
-
(2001)
IEEE Symposium on Security and Privacy (IEEE
-
-
Schultz, M.1
Eskin, E.2
Zadok, E.3
-
12
-
-
0009552269
-
Adaptive, Model-based Monitoring for Cyber Attack Detection
-
Tolouse, France, October
-
A. Valdes and K. Skinner. Adaptive, Model-based Monitoring for Cyber Attack Detection. In Proceedings of RAID 2000, Tolouse, France, October 2000.
-
(2000)
Proceedings of RAID
-
-
Valdes, A.1
Skinner, K.2
-
13
-
-
34547256105
-
-
MySQL
-
MySQL: http://www.mysql.com/
-
-
-
-
14
-
-
84944737204
-
Bayesian event classification for intrusion detection
-
Las Vegas, Nevada, December 08-12
-
C. Kruegel, D. Mutz, W. Robertson, and F. Valeur. Bayesian event classification for intrusion detection. In 19th Annual Computer Security Applications Conference, Las Vegas, Nevada, December 08-12 2003.
-
(2003)
19th Annual Computer Security Applications Conference
-
-
Kruegel, C.1
Mutz, D.2
Robertson, W.3
Valeur, F.4
-
15
-
-
34547246205
-
-
N.S. Abouzakhar and A. Gani et.al., Bayesian leaning networks approach to cybercrime detection, PGNet 2003, June 16-17, 2003, Liverpool, UK.
-
N.S. Abouzakhar and A. Gani et.al., "Bayesian leaning networks approach to cybercrime detection", PGNet 2003, June 16-17, 2003, Liverpool, UK.
-
-
-
-
17
-
-
34547274089
-
Detecting viral propagations using email behavior profiles
-
Stolfo, S. et al. Detecting viral propagations using email behavior profiles. In ACM TOIT. 2004.
-
(2004)
ACM TOIT
-
-
Stolfo, S.1
-
18
-
-
34547254553
-
-
Meyer, T. A., and Whateley, B. SpamBayes: Effective open-source, Bayesian based, email classification system. In CEAS, 2004.
-
Meyer, T. A., and Whateley, B. SpamBayes: Effective open-source, Bayesian based, email classification system. In CEAS, 2004.
-
-
-
-
19
-
-
34547298734
-
-
Sendmail Consortium
-
Sendmail Consortium, http://www.sendmail.org
-
-
-
|