-
1
-
-
0023403479
-
A mathematical model of the development of drug resistance to cancer chemotherapy
-
Birkhead, B.G., Rakin, E.M., Gallivan, S., Dones, L. and Rubens, R.D. A mathematical model of the development of drug resistance to cancer chemotherapy, J. Cancer. Clin. Oncol. 23(9), 1421-1427, 1987.
-
(1987)
J. Cancer. Clin. Oncol
, vol.23
, Issue.9
, pp. 1421-1427
-
-
Birkhead, B.G.1
Rakin, E.M.2
Gallivan, S.3
Dones, L.4
Rubens, R.D.5
-
2
-
-
33645360143
-
-
Jones & Bartlett, Mississauga, ON
-
Barton-Burke, M., Wilkes, G.M., Ingwersen, K.C. Cancer Chemotherapy: A Nursing Process approach, Jones & Bartlett, Mississauga, ON, 2001.
-
(2001)
Cancer Chemotherapy: A Nursing Process approach
-
-
Barton-Burke, M.1
Wilkes, G.M.2
Ingwersen, K.C.3
-
4
-
-
0026606696
-
A theoretical analysis of interval drug dosing for cell-cycle-phase-specific drugs
-
Cojocaru, L. and Agur, Z. A theoretical analysis of interval drug dosing for cell-cycle-phase-specific drugs, Math. Biosci. 109, 85-97, 1992.
-
(1992)
Math. Biosci
, vol.109
, pp. 85-97
-
-
Cojocaru, L.1
Agur, Z.2
-
5
-
-
0003082201
-
On the zeros of some transcendental equations
-
Cooke, K., Van den Driessche, P. On the zeros of some transcendental equations, Funkcialaj Ekvacioj, 29, 77-90, 1986.
-
(1986)
Funkcialaj Ekvacioj
, vol.29
, pp. 77-90
-
-
Cooke, K.1
Van den Driessche, P.2
-
7
-
-
0021894588
-
Macrophage T lymphocyte interactions in the anti-tumor immune response: A mathematical model
-
De Boer et al Macrophage T lymphocyte interactions in the anti-tumor immune response: A mathematical model, J. Immu. 134, 2748-2758, 1985.
-
(1985)
J. Immu
, vol.134
, pp. 2748-2758
-
-
Boer, D.1
-
8
-
-
0017332977
-
Immune surveillance and neoplasia: A minimal mathematical model
-
DeLisi, C and Resoigno, A. Immune surveillance and neoplasia: A minimal mathematical model, B. Math. Biol., 39, 201-221, 1997.
-
(1997)
B. Math. Biol
, vol.39
, pp. 201-221
-
-
DeLisi, C.1
Resoigno, A.2
-
11
-
-
0033039236
-
Hopf bifurcation in epidemic models with a time delay in vaccination
-
Khan, Q.J.A., Greenhalgh, D. Hopf bifurcation in epidemic models with a time delay in vaccination, IAM J. Appl. Med. Biol. 16, 113-142, 1999.
-
(1999)
IAM J. Appl. Med. Biol
, vol.16
, pp. 113-142
-
-
Khan, Q.J.A.1
Greenhalgh, D.2
-
12
-
-
34547340997
-
Long-range predictability in models of cell populations subjected to phase-specific drugs: Growth-rate approximation using properties of positive compact operators, Mathematical Models & Methods in the Applied Sciences
-
In Press
-
Kheifetz, Y., Kogan, Y., Agur, Z. Long-range predictability in models of cell populations subjected to phase-specific drugs: Growth-rate approximation using properties of positive compact operators, Mathematical Models & Methods in the Applied Sciences. In Press.
-
-
-
Kheifetz, Y.1
Kogan, Y.2
Agur, Z.3
-
13
-
-
34547364418
-
-
Kimmel, M. and Swierniak, A. Using control theory to make cancer chemotherapy benefical from phase dependence and resistant to drug resistance, J. Math. Biosci. , 2006.
-
Kimmel, M. and Swierniak, A. Using control theory to make cancer chemotherapy benefical from phase dependence and resistant to drug resistance, J. Math. Biosci. , 2006.
-
-
-
-
14
-
-
0032160863
-
Modeling immunotherapy of the tumor-immune interation
-
Kirschner, D., Panetta, J. Modeling immunotherapy of the tumor-immune interation, J. Math. Biol. 37, 235-252, 1998.
-
(1998)
J. Math. Biol
, vol.37
, pp. 235-252
-
-
Kirschner, D.1
Panetta, J.2
-
16
-
-
0035082998
-
A mathematical model of invitro cancer cell growth and treatment with the antimitoic agent curacin A
-
Kozusko, F. et al. A mathematical model of invitro cancer cell growth and treatment with the antimitoic agent curacin A, Math. Biosci. 170, 1-16, 2001.
-
(2001)
Math. Biosci
, vol.170
, pp. 1-16
-
-
Kozusko, F.1
-
17
-
-
0028388757
-
Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis
-
Kuznetsov, A., et al. Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, B. Math. Biol., 56, 295-321, 1994.
-
(1994)
B. Math. Biol
, vol.56
, pp. 295-321
-
-
Kuznetsov, A.1
-
18
-
-
0035030264
-
Cell kinetic status of hematopoietic stem cells
-
Mackey, M.C. Cell kinetic status of hematopoietic stem cells, Cell Prolif., 34, 71-83, 2001.
-
(2001)
Cell Prolif
, vol.34
, pp. 71-83
-
-
Mackey, M.C.1
-
19
-
-
0020155008
-
A test for stability of linear differential equations
-
Mahaffy, J.: A test for stability of linear differential equations, Quart. Appl. Math. 40, 193-202, 1982.
-
(1982)
Quart. Appl. Math
, vol.40
, pp. 193-202
-
-
Mahaffy, J.1
-
21
-
-
0346245914
-
Modelling the controls of the eukaryotic cell cycle
-
Novak, B. and Tyson, J.J. Modelling the controls of the eukaryotic cell cycle, Biochem. Soc. Trans. 31, 1526-1529, 2003.
-
(2003)
Biochem. Soc. Trans
, vol.31
, pp. 1526-1529
-
-
Novak, B.1
Tyson, J.J.2
-
22
-
-
0030140255
-
A mathematical model of periodically pulsed chemotherapy: Tumor metastasis in a competitive environment
-
Panetta, J. A mathematical model of periodically pulsed chemotherapy: Tumor metastasis in a competitive environment, Bull. Math. Biol. 58, 425-447, 1996.
-
(1996)
Bull. Math. Biol
, vol.58
, pp. 425-447
-
-
Panetta, J.1
-
23
-
-
0015085399
-
Prospectives in oncogenesis: Does immunity stimulate or inhibit neoplasia?
-
Prehn, R.T. Prospectives in oncogenesis: Does immunity stimulate or inhibit neoplasia?, J. Reticuloendothel. Soc., 10, 1-18, 1971.
-
(1971)
J. Reticuloendothel. Soc
, vol.10
, pp. 1-18
-
-
Prehn, R.T.1
-
24
-
-
0017062768
-
A mathematical model of the acute myeloblastic leukemic state in man
-
Rubinow, S.I. and Lebowitz, J.L.: A mathematical model of the acute myeloblastic leukemic state in man, Biophys. Journal, 16, 897-910, 1976.
-
(1976)
Biophys. Journal
, vol.16
, pp. 897-910
-
-
Rubinow, S.I.1
Lebowitz, J.L.2
-
25
-
-
0004984617
-
Tumor growth models and cancer chemotherapy
-
Chapter 3, Edited by J.R. Thompson and B. Brown, Marcel Dekker, New York
-
Swan, G.W. Tumor growth models and cancer chemotherapy, In Cancer Modeling , Volume 83, Chapter 3, (Edited by J.R. Thompson and B. Brown), Marcel Dekker, New York, 91-179, 1987.
-
(1987)
Cancer Modeling
, vol.83
, pp. 91-179
-
-
Swan, G.W.1
-
26
-
-
1442287879
-
An optimal control problem for cancer cycle-phase-specific chemotherapy
-
to appear
-
Villasana, M., Ochoa, G. An optimal control problem for cancer cycle-phase-specific chemotherapy, to appear, IEEE TEC Journal, 2004.
-
(2004)
IEEE TEC Journal
-
-
Villasana, M.1
Ochoa, G.2
-
27
-
-
1442290947
-
A delay differential equation model for tumor growth
-
Villasana, M, Radunskaya, A. A delay differential equation model for tumor growth, J. Math. Biol. 47, 270-294, 2003.
-
(2003)
J. Math. Biol
, vol.47
, pp. 270-294
-
-
Villasana, M.1
Radunskaya, A.2
-
28
-
-
0002754598
-
A cell population model of periodic chemotherapy treatment
-
Elsevier Science
-
Webb, G.F. A cell population model of periodic chemotherapy treatment, In Biomedical Modeling and Simulation, Elsevier Science, 83-92, 1992.
-
(1992)
Biomedical Modeling and Simulation
, pp. 83-92
-
-
Webb, G.F.1
|