-
1
-
-
0010987193
-
Analysis and solution of a nonlinear second-order differential equation through rescaling and through a dynamical point-of-view
-
P. G. L. Leach, M. R. Feix, and S. Bouquet, " Analysis and solution of a nonlinear second-order differential equation through rescaling and through a dynamical point-of-view., " J. Math. Phys.. 29, 2563-2569 (1989).
-
(1989)
J. Math. Phys.
, vol.29
, pp. 2563-2569
-
-
Leach, P.G.L.1
Feix, M.R.2
Bouquet, S.3
-
2
-
-
0342511714
-
Gauge theories in mechanics
-
I. A. Kunin, " Gauge theories in mechanics., " Lect. Notes Phys. 249, 246-269 (1986).
-
(1986)
Lect. Notes Phys.
, vol.249
, pp. 246-269
-
-
Kunin, I.A.1
-
4
-
-
33751571563
-
Gauge freedom in orbital mechanics
-
M. Efroimsky, " Gauge freedom in orbital mechanics., " Ann. N.Y. Acad. Sci. 1065, 346-374 (2005).
-
(2005)
Ann. N.Y. Acad. Sci.
, vol.1065
, pp. 346-374
-
-
Efroimsky, M.1
-
5
-
-
0345581673
-
Gauge symmetry of the N-body problem in the Hamilton-Jacobi approach
-
M. Efroimsky and P. Goldreich, " Gauge symmetry of the N-body problem in the Hamilton-Jacobi approach., " J. Math. Phys. 44, 5958-5977 (2003).
-
(2003)
J. Math. Phys.
, vol.44
, pp. 5958-5977
-
-
Efroimsky, M.1
Goldreich, P.2
-
6
-
-
1542366376
-
Gauge freedom in the N-body problem of celestial mechanics
-
M. Efroimsky and P. Goldreich, " Gauge freedom in the N-body problem of celestial mechanics., " Astron. Astrophys. 415, 1187-1199 (2004).
-
(2004)
Astron. Astrophys.
, vol.415
, pp. 1187-1199
-
-
Efroimsky, M.1
Goldreich, P.2
-
7
-
-
12744265266
-
Analysis of J2 -perturbed motion using mean non-osculating orbital elements
-
P. Gurfil, " Analysis of J2 -perturbed motion using mean non-osculating orbital elements., " Celestial Mechanics and Dynamical Astronomy 90, 289-306 (2004).
-
(2004)
Celestial Mechanics and Dynamical Astronomy
, vol.90
, pp. 289-306
-
-
Gurfil, P.1
-
8
-
-
0345043927
-
Multiple time scales in orbital mechanics
-
W. I. Newman and M. Efroimsky, " Multiple time scales in orbital mechanics., " Chaos 13, 476-485 (2003).
-
(2003)
Chaos
, vol.13
, pp. 476-485
-
-
Newman, W.I.1
Efroimsky, M.2
-
9
-
-
0029528651
-
Pattern evocation and geometric phases in mechanical systems with symmetry
-
J. E. Marsden and J. Scheurle, " Pattern evocation and geometric phases in mechanical systems with symmetry., " Dyn. Stab. Syst. 10, 315-338 (1995).
-
(1995)
Dyn. Stab. Syst.
, vol.10
, pp. 315-338
-
-
Marsden, J.E.1
Scheurle, J.2
-
10
-
-
34547264702
-
-
Proceedings of the ICIAM Conference, Hamburg, Germany, July
-
J. E. Marsden, J. Scheurle, and J. M. Wendlandt, " Visualization of orbits and pattern evocation for the double spherical pendulum., " Proceedings of the ICIAM Conference, Hamburg, Germany, July, 1995.
-
(1995)
Visualization of Orbits and Pattern Evocation for the Double Spherical Pendulum
-
-
Marsden, J.E.1
Scheurle, J.2
Wendlandt, J.M.3
-
11
-
-
24944549434
-
Oscillators in resonance p:q:r
-
M. Arribas, A. Elipe, L. Floría, and A. Riaguas, " Oscillators in resonance p:q:r., " Chaos, Solitons Fractals 27, 2006, pp. 1220-1228.
-
(2006)
Chaos, Solitons Fractals
, vol.27
, pp. 1220-1228
-
-
Arribas, M.1
Elipe, A.2
Floría, L.3
Riaguas, A.4
-
12
-
-
0016094724
-
Bilinear systems: An appealing class of nearly linear' systems in theory and applications
-
C. Bruni, G. DiPillo, and G. Koch, " Bilinear systems: An appealing class of nearly linear' systems in theory and applications., " IEEE Trans. Autom. Control 19, 334-348 (1974).
-
(1974)
IEEE Trans. Autom. Control
, vol.19
, pp. 334-348
-
-
Bruni, C.1
Dipillo, G.2
Koch, G.3
-
13
-
-
0036996395
-
-
Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, December
-
N. Khaneja and S. J. Glaser, " Constrained bilinear systems., " Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV,, December, 2002.
-
(2002)
Constrained Bilinear Systems
-
-
Khaneja, N.1
Glaser, S.J.2
-
14
-
-
23844558037
-
Geometric phase in chemical reactions
-
D. C. Clary, " Geometric phase in chemical reactions., " Science 309, 1195-1196 (2005).
-
(2005)
Science
, vol.309
, pp. 1195-1196
-
-
Clary, D.C.1
-
17
-
-
33947254394
-
Method of exact linearization of nonlinear autonomous differential equations of second order
-
L. M. Berkovich, " Method of exact linearization of nonlinear autonomous differential equations of second order., " J. Appl. Math. Mech. 43, 629-638 (1979).
-
(1979)
J. Appl. Math. Mech.
, vol.43
, pp. 629-638
-
-
Berkovich, L.M.1
-
18
-
-
21144464640
-
The Painlev́ test, hidden symmetries and the equation y″ +y y′ +K y3 =0
-
R. L. Lemmer and P. G. L. Leach, " The Painlev́ test, hidden symmetries and the equation y″ +y y′ +K y3 =0., " J. Phys. A 26, 5017-5024 (1993).
-
(1993)
J. Phys. A
, vol.26
, pp. 5017-5024
-
-
Lemmer, R.L.1
Leach, P.G.L.2
-
19
-
-
0037336802
-
Discrete systems of controlled pendulum type
-
B. Yamrom, I. Kunin, R. Metcalfe, and G. Chernykh, " Discrete systems of controlled pendulum type., " Int. J. Eng. Sci. 41, 449-458 (2003).
-
(2003)
Int. J. Eng. Sci.
, vol.41
, pp. 449-458
-
-
Yamrom, B.1
Kunin, I.2
Metcalfe, R.3
Chernykh, G.4
-
20
-
-
0142180428
-
On three definitions of chaos
-
B. Aulbach and B. Kieninger, " On three definitions of chaos., " Nonlinear Dyn. 1, 23-37 (2001).
-
(2001)
Nonlinear Dyn.
, vol.1
, pp. 23-37
-
-
Aulbach, B.1
Kieninger, B.2
-
21
-
-
27144536597
-
Chaos and randomness: An equivalence proof of a generalized version of the Shannon entropy and the Kolmogorov-Sinai entropy for Hamiltonian dynamical systems
-
R. Frigg, " Chaos and randomness: An equivalence proof of a generalized version of the Shannon entropy and the Kolmogorov-Sinai entropy for Hamiltonian dynamical systems., " Chaos, Solitons Fractals 28, 26-31 (2006).
-
(2006)
Chaos, Solitons Fractals
, vol.28
, pp. 26-31
-
-
Frigg, R.1
-
23
-
-
11144273164
-
The relative Lyapunov indicator: An efficient method of chaos determination
-
Z. Sándor, B. Érdi, A. Sźll, and B. Funk, " The relative Lyapunov indicator: An efficient method of chaos determination., " Celestial Mechanics and Dynamical Astronomy 90, 127-138 (2004).
-
(2004)
Celestial Mechanics and Dynamical Astronomy
, vol.90
, pp. 127-138
-
-
Sándor, Z.1
Érdi, B.2
Sźll, A.3
Funk, B.4
-
24
-
-
84991597400
-
A numerical approach to ergodic problem of dissipative dynamical systems
-
I. Shimada and T. Nagashima, " A numerical approach to ergodic problem of dissipative dynamical systems., " Prog. Theor. Phys. 61, 1605-1617 (1979).
-
(1979)
Prog. Theor. Phys.
, vol.61
, pp. 1605-1617
-
-
Shimada, I.1
Nagashima, T.2
-
25
-
-
0021224909
-
Determining Lyapunov exponents from a time series
-
A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, " Determining Lyapunov exponents from a time series., " Physica D 16, 285-317 (1985).
-
(1985)
Physica D
, vol.16
, pp. 285-317
-
-
Wolf, A.1
Swift, J.B.2
Swinney, H.L.3
Vastano, J.A.4
-
27
-
-
29044437517
-
Sticky orbits in a kicked-oscillator model
-
J. H. Lowenstein, G. Poggiaspalla, and F. Vivaldi, " Sticky orbits in a kicked-oscillator model., " Dyn. Syst. 20, 413-451 (2005).
-
(2005)
Dyn. Syst.
, vol.20
, pp. 413-451
-
-
Lowenstein, J.H.1
Poggiaspalla, G.2
Vivaldi, F.3
-
28
-
-
0040799523
-
Partial Lyapunov exponents in tangent space dynamics
-
A. Campa, A. Giansanti, and A. Tenenbaum, " Partial Lyapunov exponents in tangent space dynamics., " J. Phys. A 25, 1915-1924 (1992).
-
(1992)
J. Phys. A
, vol.25
, pp. 1915-1924
-
-
Campa, A.1
Giansanti, A.2
Tenenbaum, A.3
-
30
-
-
0037335480
-
Kolmogorov complexity and chaotic phenomena
-
V. Kreinovich and I. A. Kunin, " Kolmogorov complexity and chaotic phenomena., " Int. J. Eng. Sci. 41, 483-493 (2003).
-
(2003)
Int. J. Eng. Sci.
, vol.41
, pp. 483-493
-
-
Kreinovich, V.1
Kunin, I.A.2
|