-
1
-
-
0031188291
-
A mathematical analysis of the PML method
-
S. ABARBANEL AND D. GOTTLIEB, A mathematical analysis of the PML method, J. Comput. Phys., 134 (1997), pp. 357-363.
-
(1997)
J. Comput. Phys
, vol.134
, pp. 357-363
-
-
ABARBANEL, S.1
GOTTLIEB, D.2
-
2
-
-
84980167404
-
Radiation boundary conditions for wave-like equations
-
A. BAYLISS AND E. TURKEL, Radiation boundary conditions for wave-like equations, Comm. Pure Appl. Math, 33 (1980), pp. 707-725.
-
(1980)
Comm. Pure Appl. Math
, vol.33
, pp. 707-725
-
-
BAYLISS, A.1
TURKEL, E.2
-
3
-
-
0000350889
-
On accuracy conditions for the numerical computations of waves
-
A. BAYLISS, C. I. GOLDSTEIN, AND E. TURKEL, On accuracy conditions for the numerical computations of waves, J. Comput. Phys., 59 (1985), pp. 396-404.
-
(1985)
J. Comput. Phys
, vol.59
, pp. 396-404
-
-
BAYLISS, A.1
GOLDSTEIN, C.I.2
TURKEL, E.3
-
4
-
-
0141780468
-
IS the pollution effect of the FEM avoidable for the Helmholtz equations considering high wave numbers?
-
I. M. BABUŠKA AND S. A. SAUTER, IS the pollution effect of the FEM avoidable for the Helmholtz equations considering high wave numbers?, SIAM Rev., 42 (2000), pp. 451-484.
-
(2000)
SIAM Rev
, vol.42
, pp. 451-484
-
-
BABUŠKA, I.M.1
SAUTER, S.A.2
-
5
-
-
28044459877
-
A perfectly matched layer for the absorption of electromagnetic waves
-
J. P. BERENGER, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114 (1994), pp. 185-200.
-
(1994)
J. Comput. Phys
, vol.114
, pp. 185-200
-
-
BERENGER, J.P.1
-
6
-
-
0030239565
-
Three-dimensional perfectly matched layer for the absorption of electromagnetic waves
-
J. P. BERENGER, Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 127 (1996), pp. 363-379.
-
(1996)
J. Comput. Phys
, vol.127
, pp. 363-379
-
-
BERENGER, J.P.1
-
7
-
-
10244278127
-
Adaptive Smooth Aggregation (αSA)
-
M. BREZINA, R. FALGOUT, S. MACLACHLAN, T. MANTEUFFEL, S. MCCORMICK, AND J. RUGE, Adaptive Smooth Aggregation (αSA), SIAM J. Sci. Comput., 25 (2004), pp. 1896-1920.
-
(2004)
SIAM J. Sci. Comput
, vol.25
, pp. 1896-1920
-
-
BREZINA, M.1
FALGOUT, R.2
MACLACHLAN, S.3
MANTEUFFEL, T.4
MCCORMICK, S.5
RUGE, J.6
-
8
-
-
0004056964
-
Multigrid Techniques
-
Sankt Augustin, Germany
-
A. BRANDT, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Monograph, GMD-Studie 85, GMD-FIT, Sankt Augustin, Germany, 1985.
-
(1984)
Guide with Applications to Fluid Dynamics, Monograph, GMD-Studie 85, GMD-FIT
-
-
BRANDT, A.1
-
9
-
-
0000657234
-
Wave-ray multigrid method for standing wave equations
-
A. BRANDT AND I. LIVSHITS, Wave-ray multigrid method for standing wave equations, Electron. Trans. Numer. Anal., 6 (1997), pp. 162-181.
-
(1997)
Electron. Trans. Numer. Anal
, vol.6
, pp. 162-181
-
-
BRANDT, A.1
LIVSHITS, I.2
-
10
-
-
10044248632
-
An algebraic multigrid wave-ray algorithm to solve eigenvalue problems for the Helmholtz operator
-
I. LIVSHITS, An algebraic multigrid wave-ray algorithm to solve eigenvalue problems for the Helmholtz operator, Numer. Linear Algebra Appl., 11 (2004), pp. 229-239.
-
(2004)
Numer. Linear Algebra Appl
, vol.11
, pp. 229-239
-
-
LIVSHITS, I.1
-
11
-
-
0041400606
-
Multigrid methods for nearly singular and slightly indefinite problems
-
Multigrid Methods II, W. Hackbush and U. Trottenberg, eds, Springer-Verlag
-
A. BRANDT AND S. TA'ASAN, Multigrid methods for nearly singular and slightly indefinite problems, in Multigrid Methods II, W. Hackbush and U. Trottenberg, eds., Lecture Notes in Math. 1228, Springer-Verlag, 1985, pp. 100-122.
-
(1985)
Lecture Notes in Math
, vol.1228
, pp. 100-122
-
-
BRANDT, A.1
TA'ASAN, S.2
-
12
-
-
0344549300
-
Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions
-
A. DERAEMAKER, I. BABUSKA, AND P. BOUILLARD, Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimensions, Int. J. Numer. Methods Engrg., 46 (1999), pp. 471-499.
-
(1999)
Int. J. Numer. Methods Engrg
, vol.46
, pp. 471-499
-
-
DERAEMAKER, A.1
BABUSKA, I.2
BOUILLARD, P.3
-
13
-
-
0036344991
-
A multigrid method enhanced by Krylov subspace iterations for discrete Helmholtz equations
-
H. C. ELMAN, O. G. ERNST, AND D. P. O'LEARY, A multigrid method enhanced by Krylov subspace iterations for discrete Helmholtz equations, SIAM J. Sci. Comput., 23 (2001), pp. 1291-1315.
-
(2001)
SIAM J. Sci. Comput
, vol.23
, pp. 1291-1315
-
-
ELMAN, H.C.1
ERNST, O.G.2
O'LEARY, D.P.3
-
14
-
-
0001201384
-
Finite element solution to the Helmholtz equation with high wave numbers, Part I: The h-version of the FEM
-
F. IHLENBURG AND I. BABUSKA, Finite element solution to the Helmholtz equation with high wave numbers, Part I: The h-version of the FEM, Comput. Math. Appl., 30 (1995), pp. 9-37.
-
(1995)
Comput. Math. Appl
, vol.30
, pp. 9-37
-
-
IHLENBURG, F.1
BABUSKA, I.2
-
15
-
-
0033693515
-
First-order system least-squares for the Helmholtz equation
-
B. LEE, T. A. MANTEUFFEL, S. F. MCCORMICK, AND J. RUGE, First-order system least-squares for the Helmholtz equation, SIAM J. Sci. Comput., 21 (2000), pp. 1927-1949.
-
(2000)
SIAM J. Sci. Comput
, vol.21
, pp. 1927-1949
-
-
LEE, B.1
MANTEUFFEL, T.A.2
MCCORMICK, S.F.3
RUGE, J.4
-
16
-
-
0041599815
-
A Cartesian perfectly matched layer for the Helmholtz equation
-
Harpern, eds, Springer-Verlag, Berlin
-
S. TSYNKOV AND E. TURKEL, A Cartesian perfectly matched layer for the Helmholtz equation, in Absorbing Boundaries and Layers, Domain Decomposition Method Applications to Large Scale Computation, L. Tourette and L. Harpern, eds., Springer-Verlag, Berlin, 2001, pp. 279-309.
-
(2001)
Absorbing Boundaries and Layers, Domain Decomposition Method Applications to Large Scale Computation, L. Tourette and L
, pp. 279-309
-
-
TSYNKOV, S.1
TURKEL, E.2
-
17
-
-
0008858386
-
TWO level algebraic multigrid for the Helmholtz problem
-
P. VANEK, J. MANDEL, AND M. BREZINA, TWO level algebraic multigrid for the Helmholtz problem, Contemp. Math., 218 (1998), pp, 349-356.
-
(1998)
Contemp. Math
, vol.218
, pp. 349-356
-
-
VANEK, P.1
MANDEL, J.2
BREZINA, M.3
|