-
1
-
-
0026174179
-
-
IEJQA7 0018-9197 10.1109/3.89951
-
T. Baba, IEEE J. Quantum Electron. IEJQA7 0018-9197 27, 1347 (1991). 10.1109/3.89951
-
(1991)
IEEE J. Quantum Electron.
, vol.27
, pp. 1347
-
-
Baba, T.1
-
2
-
-
33745947692
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.58.2059
-
E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987). PRLTAO 0031-9007 10.1103/PhysRevLett.58.2059
-
(1987)
Phys. Rev. Lett.
, vol.58
, pp. 2059
-
-
Yablonovitch, E.1
-
3
-
-
28244458772
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.71.241304
-
A. Kress, Phys. Rev. B PRBMDO 0163-1829 71, 241304(R) (2005); 10.1103/PhysRevB.71.241304
-
(2005)
Phys. Rev. B
, vol.71
-
-
Kress, A.1
-
4
-
-
28344452483
-
-
APPLAB 0003-6951 10.1063/1.2103397
-
S. Laurent, Appl. Phys. Lett. 87, 163107 (2005); APPLAB 0003-6951 10.1063/1.2103397
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 163107
-
-
Laurent, S.1
-
5
-
-
24044482072
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.013904
-
D. Englund, Phys. Rev. Lett. PRLTAO 0031-9007 95, 013904 (2005); 10.1103/PhysRevLett.95.013904
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 013904
-
-
Englund, D.1
-
6
-
-
33645058176
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.117401
-
W.H. Chang, Phys. Rev. Lett. 96, 117401 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.117401
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 117401
-
-
Chang, W.H.1
-
7
-
-
1542574322
-
-
APPLAB 0003-6951 10.1063/1.1647274
-
H.Y. Ryu Appl. Phys. Lett. 84, 1067 (2004); APPLAB 0003-6951 10.1063/1.1647274
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 1067
-
-
Ryu, H.Y.1
-
8
-
-
33645527561
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.127404
-
S. Strauf, Phys. Rev. Lett. 96, 127404 (2006); PRLTAO 0031-9007 10.1103/PhysRevLett.96.127404
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 127404
-
-
Strauf, S.1
-
10
-
-
17144437082
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.69.016609
-
R.C. McPhedran, Phys. Rev. E 69, 016609 (2004). PLEEE8 1063-651X 10.1103/PhysRevE.69.016609
-
(2004)
Phys. Rev. e
, vol.69
, pp. 016609
-
-
McPhedran, R.C.1
-
11
-
-
0028498156
-
-
Here, we adopt the viewpoint of MOTLEO 0895-2477
-
Here, we adopt the viewpoint of W.C. Chew and W.H. Weedon, Microw. Opt. Technol. Lett. MOTLEO 0895-2477 7, 599 (1994).
-
(1994)
Microw. Opt. Technol. Lett.
, vol.7
, pp. 599
-
-
Chew, W.C.1
Weedon, W.H.2
-
12
-
-
34547184468
-
-
A PML in a given direction, say the α direction, is seen as a complex coordinate transform that virtually allows one to rigorously satisfy the outgoing wave conditions of a semi-infinite open α-invariant system into a finite computational window with vanishing fields at the outer boundary.
-
A PML in a given direction, say the α direction, is seen as a complex coordinate transform that virtually allows one to rigorously satisfy the outgoing wave conditions of a semi-infinite open α-invariant system into a finite computational window with vanishing fields at the outer boundary.
-
-
-
-
13
-
-
0347655548
-
-
MOTLEO 0895-2477 10.1002/mop.11268
-
A.R. Weily, Microw. Opt. Technol. Lett. MOTLEO 0895-2477 40, 1 (2004). 10.1002/mop.11268
-
(2004)
Microw. Opt. Technol. Lett.
, vol.40
, pp. 1
-
-
Weily, A.R.1
-
14
-
-
9144251054
-
-
An analytic treatment in the z direction of periodic waveguides has been recently used through a photonic Green-tensor formalism; see OPLEDP 0146-9592 10.1364/OL.29.002659
-
An analytic treatment in the z direction of periodic waveguides has been recently used through a photonic Green-tensor formalism; see S. Hughes, Opt. Lett. OPLEDP 0146-9592 29, 2659 (2004). However, in this previous work, only emission into the bounded Bloch mode is obtained. The approach adopted here additionally allows one to handle the coupling into the radiation Bloch modes, which is crucial in the present context. 10.1364/OL.29.002659
-
(2004)
Opt. Lett.
, vol.29
, pp. 2659
-
-
Hughes, S.1
-
16
-
-
34547209180
-
-
In contrast with the normal Bloch modes used in, the QNBMs are not orthogonal in the sense of the Poynting vector (E×H* product) because of the PMLs. However, they indeed obey the unconjugate general form of orthogonality with E×H product.
-
In contrast with the normal Bloch modes used in, the QNBMs are not orthogonal in the sense of the Poynting vector (E×H* product) because of the PMLs. However, they indeed obey the unconjugate general form of orthogonality with E×H product.
-
-
-
-
17
-
-
0036647688
-
-
IEJQA7 0018-9197 10.1109/JQE.2002.1017589
-
P. Lalanne, IEEE J. Quantum Electron. IEJQA7 0018-9197 38, 800 (2002); 10.1109/JQE.2002.1017589
-
(2002)
IEEE J. Quantum Electron.
, vol.38
, pp. 800
-
-
Lalanne, P.1
-
19
-
-
33746741698
-
-
For instance, for semiconductor (n=3.5) wires in air, β peaks at a value of 65% for a square geometry with a lateral size of 0.7λ/n; see details in PSISDG 0277-786X 10.1117/12.664089
-
For instance, for semiconductor (n=3.5) wires in air, β peaks at a value of 65% for a square geometry with a lateral size of 0.7λ/n; see details in G. Lecamp, Proc. SPIE-Int. Soc. Opt. Eng. 6195, 61950E (2006). PSISDG 0277-786X 10.1117/12.664089
-
(2006)
Proc. SPIE-Int. Soc. Opt. Eng.
, vol.6195
-
-
Lecamp, G.1
-
20
-
-
28644443240
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.71.165118
-
C. Sauvan, P. Lalanne, and J.P. Hugonin, Phys. Rev. B PRBMDO 0163-1829 71, 165118 (2005). 10.1103/PhysRevB.71.165118
-
(2005)
Phys. Rev. B
, vol.71
, pp. 165118
-
-
Sauvan, C.1
Lalanne, P.2
Hugonin, J.P.3
-
21
-
-
18844418460
-
-
SCIEAS 0036-8075 10.1126/science.1109815
-
A. Badolato, Science 308, 1158 (2005). SCIEAS 0036-8075 10.1126/science.1109815
-
(2005)
Science
, vol.308
, pp. 1158
-
-
Badolato, A.1
|