-
1
-
-
85157238386
-
-
Alekseeva, S. M. and Yurchuk, N. I., The quasi-reversibility method for the problem of the control of an initial condition for the heat equation with an integral boundary condition. Diff. Equations 34 (1998) (4), 493 - 500.
-
Alekseeva, S. M. and Yurchuk, N. I., The quasi-reversibility method for the problem of the control of an initial condition for the heat equation with an integral boundary condition. Diff. Equations 34 (1998) (4), 493 - 500.
-
-
-
-
2
-
-
0032384591
-
A comparison of regularizations for an ill-posed problem
-
Ames, K. A., Clark, G. W., Epperson, J. F., Oppenheimer, S. F., A comparison of regularizations for an ill-posed problem. Math. Comp. 67 (1998), no.224, 1451 - 1471.
-
(1998)
Math. Comp
, vol.67
, Issue.224
, pp. 1451-1471
-
-
Ames, K.A.1
Clark, G.W.2
Epperson, J.F.3
Oppenheimer, S.F.4
-
3
-
-
1942417404
-
Continuous dependence on modeling for some well-posed perturbations of the backward heat equation
-
3 (1999)1, 51, 64
-
Ames, K. A. and Payne, L. E., Continuous dependence on modeling for some well-posed perturbations of the backward heat equation. J. Inequal. Appl. 3 (1999)(1), 51 - 64.
-
J. Inequal. Appl
-
-
Ames, K.A.1
Payne, L.E.2
-
4
-
-
0007447039
-
Quasireversibility methods for non-well-posed problem
-
Clark, G. and Oppenheimer, C., Quasireversibility methods for non-well-posed problem. Electron. J. Diff. Equations 8 (1994), 1-9.
-
(1994)
Electron. J. Diff. Equations
, vol.8
, pp. 1-9
-
-
Clark, G.1
Oppenheimer, C.2
-
6
-
-
0345854822
-
Quasi-boundary value method for non-well posed problem for a parabolic equation with integral boundary condition
-
7 (2001)2, 129, 145
-
Denche, M. and Bessila, K., Quasi-boundary value method for non-well posed problem for a parabolic equation with integral boundary condition. Math. Probl. Eng. 7 (2001)(2), 129 - 145.
-
Math. Probl. Eng
-
-
Denche, M.1
Bessila, K.2
-
8
-
-
84972525904
-
Unique continuation for parabolic differential equations and inequalities
-
Lees, M. and Protter, M. H., Unique continuation for parabolic differential equations and inequalities. Duke Math. J. 28 (1961), 369 - 382.
-
(1961)
Duke Math. J
, vol.28
, pp. 369-382
-
-
Lees, M.1
Protter, M.H.2
-
10
-
-
0040225041
-
Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed problems
-
Symposium on Non-Well-Posed Problems and Logarithmic Convexity Heriot-Watt Univ, Edinburgh 1972; ed, R. J. Knops, Berlin: Springer
-
Miller, K., Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed problems. Symposium on Non-Well-Posed Problems and Logarithmic Convexity (Heriot-Watt Univ., Edinburgh 1972; ed.: R. J. Knops). Lecture Notes Math. 316. Berlin: Springer 1973, pp. 161 - 176.
-
(1973)
Lecture Notes Math
, vol.316
, pp. 161-176
-
-
Miller, K.1
-
11
-
-
85157142575
-
A backward nonlinear heat equation: Regularization with error estimates
-
84 2005, 4, 343, 355
-
Quan, P. H. and Dung, N., A backward nonlinear heat equation: regularization with error estimates, Appl. Anal. 84 (2005) (4), 343 - 355.
-
Appl. Anal
-
-
Quan, P.H.1
Dung, N.2
-
12
-
-
85157052800
-
-
Showalter, R. E., Quasi-reversibility of first and second order parabolic evolution equations. Improperly Posed Boundary Value Problems (Conf., Univ. New Mexico, Albuquerque, N. M., 1974; eds.: A. Carasso and A. P. Stone). Res. Notes Math. 1. London: Pitman 1975, pp. 76 - 84.
-
Showalter, R. E., Quasi-reversibility of first and second order parabolic evolution equations. Improperly Posed Boundary Value Problems (Conf., Univ. New Mexico, Albuquerque, N. M., 1974; eds.: A. Carasso and A. P. Stone). Res. Notes Math. 1. London: Pitman 1975, pp. 76 - 84.
-
-
-
|