메뉴 건너뛰기




Volumn 26, Issue 2, 2007, Pages 231-245

A nonlinear case of the 1-D Backward heat problem: Regularizai ion and error estimate

Author keywords

Backward heat problem; Contraction principle; Nonlinearly Ill posed problem; Quasi boundary value methods; Quasi reversibility methods

Indexed keywords


EID: 34547169387     PISSN: 02322064     EISSN: None     Source Type: Journal    
DOI: 10.4171/ZAA/1321     Document Type: Article
Times cited : (57)

References (12)
  • 1
    • 85157238386 scopus 로고    scopus 로고
    • Alekseeva, S. M. and Yurchuk, N. I., The quasi-reversibility method for the problem of the control of an initial condition for the heat equation with an integral boundary condition. Diff. Equations 34 (1998) (4), 493 - 500.
    • Alekseeva, S. M. and Yurchuk, N. I., The quasi-reversibility method for the problem of the control of an initial condition for the heat equation with an integral boundary condition. Diff. Equations 34 (1998) (4), 493 - 500.
  • 2
    • 0032384591 scopus 로고    scopus 로고
    • A comparison of regularizations for an ill-posed problem
    • Ames, K. A., Clark, G. W., Epperson, J. F., Oppenheimer, S. F., A comparison of regularizations for an ill-posed problem. Math. Comp. 67 (1998), no.224, 1451 - 1471.
    • (1998) Math. Comp , vol.67 , Issue.224 , pp. 1451-1471
    • Ames, K.A.1    Clark, G.W.2    Epperson, J.F.3    Oppenheimer, S.F.4
  • 3
    • 1942417404 scopus 로고    scopus 로고
    • Continuous dependence on modeling for some well-posed perturbations of the backward heat equation
    • 3 (1999)1, 51, 64
    • Ames, K. A. and Payne, L. E., Continuous dependence on modeling for some well-posed perturbations of the backward heat equation. J. Inequal. Appl. 3 (1999)(1), 51 - 64.
    • J. Inequal. Appl
    • Ames, K.A.1    Payne, L.E.2
  • 4
    • 0007447039 scopus 로고
    • Quasireversibility methods for non-well-posed problem
    • Clark, G. and Oppenheimer, C., Quasireversibility methods for non-well-posed problem. Electron. J. Diff. Equations 8 (1994), 1-9.
    • (1994) Electron. J. Diff. Equations , vol.8 , pp. 1-9
    • Clark, G.1    Oppenheimer, C.2
  • 6
    • 0345854822 scopus 로고    scopus 로고
    • Quasi-boundary value method for non-well posed problem for a parabolic equation with integral boundary condition
    • 7 (2001)2, 129, 145
    • Denche, M. and Bessila, K., Quasi-boundary value method for non-well posed problem for a parabolic equation with integral boundary condition. Math. Probl. Eng. 7 (2001)(2), 129 - 145.
    • Math. Probl. Eng
    • Denche, M.1    Bessila, K.2
  • 8
    • 84972525904 scopus 로고
    • Unique continuation for parabolic differential equations and inequalities
    • Lees, M. and Protter, M. H., Unique continuation for parabolic differential equations and inequalities. Duke Math. J. 28 (1961), 369 - 382.
    • (1961) Duke Math. J , vol.28 , pp. 369-382
    • Lees, M.1    Protter, M.H.2
  • 10
    • 0040225041 scopus 로고
    • Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed problems
    • Symposium on Non-Well-Posed Problems and Logarithmic Convexity Heriot-Watt Univ, Edinburgh 1972; ed, R. J. Knops, Berlin: Springer
    • Miller, K., Stabilized quasi-reversibility and other nearly-best-possible methods for non-well-posed problems. Symposium on Non-Well-Posed Problems and Logarithmic Convexity (Heriot-Watt Univ., Edinburgh 1972; ed.: R. J. Knops). Lecture Notes Math. 316. Berlin: Springer 1973, pp. 161 - 176.
    • (1973) Lecture Notes Math , vol.316 , pp. 161-176
    • Miller, K.1
  • 11
    • 85157142575 scopus 로고    scopus 로고
    • A backward nonlinear heat equation: Regularization with error estimates
    • 84 2005, 4, 343, 355
    • Quan, P. H. and Dung, N., A backward nonlinear heat equation: regularization with error estimates, Appl. Anal. 84 (2005) (4), 343 - 355.
    • Appl. Anal
    • Quan, P.H.1    Dung, N.2
  • 12
    • 85157052800 scopus 로고    scopus 로고
    • Showalter, R. E., Quasi-reversibility of first and second order parabolic evolution equations. Improperly Posed Boundary Value Problems (Conf., Univ. New Mexico, Albuquerque, N. M., 1974; eds.: A. Carasso and A. P. Stone). Res. Notes Math. 1. London: Pitman 1975, pp. 76 - 84.
    • Showalter, R. E., Quasi-reversibility of first and second order parabolic evolution equations. Improperly Posed Boundary Value Problems (Conf., Univ. New Mexico, Albuquerque, N. M., 1974; eds.: A. Carasso and A. P. Stone). Res. Notes Math. 1. London: Pitman 1975, pp. 76 - 84.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.