메뉴 건너뛰기




Volumn 18, Issue 4, 2007, Pages 993-1002

Robust reinforcement learning control using integral quadratic constraints for recurrent neural networks

Author keywords

Integral quadratic constraints (IQCs); Recurrent neural networks (NNs); Reinforcement learning; Robust control

Indexed keywords

CONSTRAINT THEORY; CONTROL SYSTEM STABILITY; FEEDBACK CONTROL; LINEAR SYSTEMS; RECURRENT NEURAL NETWORKS; ROBUST CONTROL;

EID: 34547097516     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.899520     Document Type: Article
Times cited : (44)

References (20)
  • 2
    • 0031162465 scopus 로고    scopus 로고
    • System analysis via integral quadratic constraints
    • Jun
    • A. Megretski and A. Rantzer, "System analysis via integral quadratic constraints," IEEE Trans. Autom. Control, vol. 42, no. 6, pp. 819-830, Jun. 1997.
    • (1997) IEEE Trans. Autom. Control , vol.42 , Issue.6 , pp. 819-830
    • Megretski, A.1    Rantzer, A.2
  • 3
    • 34547118464 scopus 로고    scopus 로고
    • Robust reinforcement learning using integral-quadratic constraints
    • J. Si, A. Barto, W. Powell, and D. Wunsch, Eds. New York: Wiley
    • C. W. Anderson, R. M. Kretchmar, P. M. Young, and D. C. Hittle, "Robust reinforcement learning using integral-quadratic constraints," in Learning and Approximate Dynamic Programming, J. Si, A. Barto, W. Powell, and D. Wunsch, Eds. New York: Wiley, 2004, pp. 337-358.
    • (2004) Learning and Approximate Dynamic Programming , pp. 337-358
    • Anderson, C.W.1    Kretchmar, R.M.2    Young, P.M.3    Hittle, D.C.4
  • 7
    • 0033296299 scopus 로고    scopus 로고
    • Using SEDUMI 1.02, a Matlab toolbox for optimization over symmetric cones
    • Online. Available
    • J. F. Sturm, "Using SEDUMI 1.02, a Matlab toolbox for optimization over symmetric cones," Optim. Methods Software vol. 11-12, pp. 625-653, 1999 Online. Available: http://sedumi.mcmaster.ca
    • (1999) Optim. Methods Software , vol.11-12 , pp. 625-653
    • Sturm, J.F.1
  • 9
    • 13244279592 scopus 로고    scopus 로고
    • Robust reinforcement learning
    • J. Morimoto and K. Doya, "Robust reinforcement learning," Neural Comput., vol. 17, pp. 335-359, 2005.
    • (2005) Neural Comput , vol.17 , pp. 335-359
    • Morimoto, J.1    Doya, K.2
  • 10
    • 0141607826 scopus 로고    scopus 로고
    • Lyapunov design for safe reinforcement learning
    • T. J. Perkins and A. G. Barto, "Lyapunov design for safe reinforcement learning," J. Mach. Learn. Res., vol. 3, pp. 803-832, 2002.
    • (2002) J. Mach. Learn. Res , vol.3 , pp. 803-832
    • Perkins, T.J.1    Barto, A.G.2
  • 11
    • 34547102624 scopus 로고    scopus 로고
    • A. Megretski and A. Rantzer, System analysis via integral quadratic constraints: Part II, Lund Inst. Technol., Lund, Sweden, 1997, Tech. Rep. ISRN LUTFD2/TFRT-7559-SE.
    • A. Megretski and A. Rantzer, "System analysis via integral quadratic constraints: Part II," Lund Inst. Technol., Lund, Sweden, 1997, Tech. Rep. ISRN LUTFD2/TFRT-7559-SE.
  • 12
    • 0004178386 scopus 로고    scopus 로고
    • 3rd ed. Englewood Cliffs, NJ: Prentice-Hall
    • H. K. Khalil, Nonlinear Systems, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2002.
    • (2002) Nonlinear Systems
    • Khalil, H.K.1
  • 17
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser, "A learning algorithm for continually running fully recurrent neural networks," Neural Comput., vol. 1, pp. 270-280, 1989.
    • (1989) Neural Comput , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 18
    • 34547095134 scopus 로고    scopus 로고
    • H. Jaeger, The echo state approach to analyzing and training recurrent neural networks, Fraunhofen, Germany, Tech. Rep., 2001.
    • H. Jaeger, "The echo state approach to analyzing and training recurrent neural networks," Fraunhofen, Germany, Tech. Rep., 2001.
  • 19
    • 84954240138 scopus 로고    scopus 로고
    • Modeling reward functions for incomplete state representations via echo state networks
    • K. Bush and C. Anderson, "Modeling reward functions for incomplete state representations via echo state networks," in Proc. Int. Joint Conf. Neural Netw., 2005, vol. 5, pp. 2995-3000.
    • (2005) Proc. Int. Joint Conf. Neural Netw , vol.5 , pp. 2995-3000
    • Bush, K.1    Anderson, C.2
  • 20
    • 0036506134 scopus 로고    scopus 로고
    • Stability analysis of discrete-time recurrent neural networks
    • Mar
    • N. E. Barabanov and D. V. Prokhorov, "Stability analysis of discrete-time recurrent neural networks," IEEE Trans. Neural Netw. vol. 13, no. 2, pp. 292-303, Mar. 2002.
    • (2002) IEEE Trans. Neural Netw , vol.13 , Issue.2 , pp. 292-303
    • Barabanov, N.E.1    Prokhorov, D.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.