메뉴 건너뛰기




Volumn 67, Issue 9, 2007, Pages 2680-2689

A note on multi-point boundary value problems

Author keywords

Coincidence degree theory; Existence theorem; Multi point boundary value problems

Indexed keywords

COINCIDENCE DEGREE THEORY; EXISTENCE THEOREM; MULTI-POINT BOUNDARY VALUE PROBLEMS; SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS;

EID: 34447648535     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2006.09.032     Document Type: Article
Times cited : (32)

References (10)
  • 1
    • 0037845059 scopus 로고    scopus 로고
    • Solvability of multi-point boundary value problem at resonance (IV)
    • Liu B. Solvability of multi-point boundary value problem at resonance (IV). Appl. Math. Comput. 143 (2003) 275-299
    • (2003) Appl. Math. Comput. , vol.143 , pp. 275-299
    • Liu, B.1
  • 2
    • 0002113063 scopus 로고
    • Topological degree and boundary value problems for nonlinear differential equations
    • Topological Methods for Ordinary Differential Equations. Furi M., and Zecca P. (Eds), Springer-Verlag, Berlin, New York
    • Mawhin J. Topological degree and boundary value problems for nonlinear differential equations. In: Furi M., and Zecca P. (Eds). Topological Methods for Ordinary Differential Equations. Lecture Notes in Math. vol. 1537 (1993), Springer-Verlag, Berlin, New York 74-142
    • (1993) Lecture Notes in Math. , vol.1537 , pp. 74-142
    • Mawhin, J.1
  • 3
    • 0003295303 scopus 로고
    • Topological degree methods in nonlinear boundary value problems
    • Amer. Math. Soc., Providence, RI
    • Mawhin J. Topological degree methods in nonlinear boundary value problems. NSFCBMS Regional Conference Series in Mathematics (1979), Amer. Math. Soc., Providence, RI
    • (1979) NSFCBMS Regional Conference Series in Mathematics
    • Mawhin, J.1
  • 4
    • 33744523094 scopus 로고    scopus 로고
    • A multi-point boundary value problem with two critical conditions
    • Kosmatov N. A multi-point boundary value problem with two critical conditions. Nonlinear Anal. 65 (2006) 622-633
    • (2006) Nonlinear Anal. , vol.65 , pp. 622-633
    • Kosmatov, N.1
  • 5
    • 0002720957 scopus 로고
    • On the theory of nonlocal boundary value problems
    • Bitsadze A.V. On the theory of nonlocal boundary value problems. Soviet. Math. Dock. 30 (1964) 8-10
    • (1964) Soviet. Math. Dock. , vol.30 , pp. 8-10
    • Bitsadze, A.V.1
  • 6
    • 0001346162 scopus 로고
    • Some elementary generalizations of linear elliptic boundary value problems
    • Bitsadze A.V., and Samarskii A.A. Some elementary generalizations of linear elliptic boundary value problems. Dokil. Akad. Nauk SSSR 185 (1969) 739-740
    • (1969) Dokil. Akad. Nauk SSSR , vol.185 , pp. 739-740
    • Bitsadze, A.V.1    Samarskii, A.A.2
  • 7
    • 0000384610 scopus 로고
    • Nonlocal boundary value problems of the second kind for a Sturm-Liouville operator
    • Il'in V.A., and Moiseev E.I. Nonlocal boundary value problems of the second kind for a Sturm-Liouville operator. Differ. Equ. 23 (1987) 979-987
    • (1987) Differ. Equ. , vol.23 , pp. 979-987
    • Il'in, V.A.1    Moiseev, E.I.2
  • 8
    • 0031571521 scopus 로고    scopus 로고
    • Solvability of m-point boundary value problems with nonlinear growth
    • Feng W., and Webb J.R.L. Solvability of m-point boundary value problems with nonlinear growth. J. Math. Anal. Appl. 212 (1997) 467-480
    • (1997) J. Math. Anal. Appl. , vol.212 , pp. 467-480
    • Feng, W.1    Webb, J.R.L.2
  • 9
    • 0001367342 scopus 로고    scopus 로고
    • Solvability of three point boundary value problems at resonance
    • Feng W., and webb J.R.L. Solvability of three point boundary value problems at resonance. Nonlinear Anal. 30 (1997) 3227-3238
    • (1997) Nonlinear Anal. , vol.30 , pp. 3227-3238
    • Feng, W.1    webb, J.R.L.2
  • 10
    • 0037097110 scopus 로고    scopus 로고
    • Solvability of multi-point boundary value problem at resonance (III)
    • Liu B. Solvability of multi-point boundary value problem at resonance (III). Appl. Math. Comput. 129 (2002) 119-143
    • (2002) Appl. Math. Comput. , vol.129 , pp. 119-143
    • Liu, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.