메뉴 건너뛰기




Volumn 15, Issue 2, 2007, Pages 133-168

Generalization in the XCSF classifier system: Analysis, improvement, and extension

Author keywords

Computed prediction; Learning classifier systems; XCS

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; BIOLOGICAL MODEL; BIOLOGY; CLASSIFICATION; EVOLUTION; REGRESSION ANALYSIS; SENSITIVITY AND SPECIFICITY; STATISTICAL MODEL;

EID: 34447559965     PISSN: 10636560     EISSN: 15309304     Source Type: Journal    
DOI: 10.1162/evco.2007.15.2.133     Document Type: Article
Times cited : (40)

References (35)
  • 1
    • 34547553641 scopus 로고    scopus 로고
    • Bernadó, E., X. Llorà, and J. M. Garrell (2001). XCS and GALE: A comparative study of two learning classifier systems with six other learning algorithms on classification tasks. In Proceedings of the 4th International Workshop on Learning Classifier Systems (WLCS-2001), pp. 337-34. ACM Press, New-York, NY. Short version published in Genetic and Evolutionary Compution COnference (GECCO2001).
    • Bernadó, E., X. Llorà, and J. M. Garrell (2001). XCS and GALE: A comparative study of two learning classifier systems with six other learning algorithms on classification tasks. In Proceedings of the 4th International Workshop on Learning Classifier Systems (WLCS-2001), pp. 337-34. ACM Press, New-York, NY. Short version published in Genetic and Evolutionary Compution COnference (GECCO2001).
  • 3
    • 0001771345 scopus 로고    scopus 로고
    • Linear least-squares algorithms for temporal difference learning
    • Bradtke, S. J. and A. G. Barto (1996). Linear least-squares algorithms for temporal difference learning. Machine Learning 22(1-3), 33-57.
    • (1996) Machine Learning , vol.22 , Issue.1-3 , pp. 33-57
    • Bradtke, S.J.1    Barto, A.G.2
  • 4
    • 34249944702 scopus 로고    scopus 로고
    • Gradient descent methods in learning classifier systems
    • December, Technical Report 2003028, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign
    • Butz, M., D. E. Goldberg, and P. L. Lanzi (2003, December). Gradient descent methods in learning classifier systems. Technical Report 2003028, Illinois Genetic Algorithms Laboratory - University of Illinois at Urbana-Champaign.
    • (2003)
    • Butz, M.1    Goldberg, D.E.2    Lanzi, P.L.3
  • 5
    • 27344437190 scopus 로고    scopus 로고
    • Gradient descent methods in learning classifier systems: Improving XCS performance in multistep problems
    • October
    • Butz, M. V., D. E. Goldberg, and P. L. Lanzi (2005, October). Gradient descent methods in learning classifier systems: Improving XCS performance in multistep problems. IEEE Transaction on Evolutionary Computation 9(5), 452-473.
    • (2005) IEEE Transaction on Evolutionary Computation , vol.9 , Issue.5 , pp. 452-473
    • Butz, M.V.1    Goldberg, D.E.2    Lanzi, P.L.3
  • 6
    • 84942854203 scopus 로고    scopus 로고
    • An algorithmic description of XCS
    • P. L. Lanzi, W. Stolzmann, and S. W. Wilson Eds, Advances in Learning Classifier Systems, of, Berlin: Springer-Verlag
    • Butz, M. V. and S. W. Wilson (2001). An algorithmic description of XCS. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson (Eds.), Advances in Learning Classifier Systems, Volume 1996 of LNAI, pp. 253-272. Berlin: Springer-Verlag.
    • (2001) LNAI , vol.1996 , pp. 253-272
    • Butz, M.V.1    Wilson, S.W.2
  • 7
    • 26944470971 scopus 로고    scopus 로고
    • An algorithmic description of XCS
    • Butz, M. V and S. W. Wilson (2002). An algorithmic description of XCS. Journal of Soft Computing 6(3-4), 144-153.
    • (2002) Journal of Soft Computing , vol.6 , Issue.3-4 , pp. 144-153
    • Butz, M.V.1    Wilson, S.W.2
  • 9
    • 84949221289 scopus 로고    scopus 로고
    • A preliminary investigation of modified XCS as a generic data mining tool
    • P. L. Lanzi, W. Stolzmann, and S. W. Wilson Eds, Advances in Learning Classifier Systems, of, Berlin: Springer-Verlag
    • Dixon, P. W., D. W. Corne, and M. J. Oates (2002). A preliminary investigation of modified XCS as a generic data mining tool. In P. L. Lanzi, W. Stolzmann, and S. W. Wilson (Eds.), Advances in Learning Classifier Systems, Volume 2321 of LNAI, pp. 133-150. Berlin: Springer-Verlag.
    • (2002) LNAI , vol.2321 , pp. 133-150
    • Dixon, P.W.1    Corne, D.W.2    Oates, M.J.3
  • 10
    • 34547550027 scopus 로고    scopus 로고
    • Galassi, M., J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi (2004, July). GNU Scientific Library Reference Manual (Free Software Foundation ed.). Edition 1.5, for GSL Version 1.5. Network Theory Ltd. Bristol, UK.
    • Galassi, M., J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi (2004, July). GNU Scientific Library Reference Manual (Free Software Foundation ed.). Edition 1.5, for GSL Version 1.5. Network Theory Ltd. Bristol, UK.
  • 16
    • 0003463297 scopus 로고
    • Ann Arbor: University of Michigan Press. Republished by the MIT Press, 1992
    • Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press. Republished by the MIT Press, 1992.
    • (1975) Adaptation in Natural and Artificial Systems
    • Holland, J.H.1
  • 18
    • 12144287710 scopus 로고    scopus 로고
    • Mining interesting knowledge from data with the XCS classifier system
    • L. Spector et al, Eds, San Francisco, CA, pp, Morgan Kaufmann
    • Lanzi, P. L. (2001). Mining interesting knowledge from data with the XCS classifier system. In L. Spector et al. (Eds.), Proceedings of the Genetic and Evolutionary Computation COnference (GECCO-2001): San Francisco, CA, pp. 958-965. Morgan Kaufmann.
    • (2001) Proceedings of the Genetic and Evolutionary Computation COnference (GECCO-2001) , pp. 958-965
    • Lanzi, P.L.1
  • 21
    • 34547552120 scopus 로고    scopus 로고
    • Lanzi, P. L., D. Loiacono, S. W. Wilson, and D. E. Goldberg (2005b). Generalization in the XCSF classifier system: Analysis, improvement, and extension. Technical Report 2005012, Illinois Genetic Algorithms Laboratory - University of Illinois at Urbana-Champaign. Also available as a technical report of the Dipartimento di Elettronica e Informazione - Politecnico di Milano.
    • Lanzi, P. L., D. Loiacono, S. W. Wilson, and D. E. Goldberg (2005b). Generalization in the XCSF classifier system: Analysis, improvement, and extension. Technical Report 2005012, Illinois Genetic Algorithms Laboratory - University of Illinois at Urbana-Champaign. Also available as a technical report of the Dipartimento di Elettronica e Informazione - Politecnico di Milano.
  • 25
    • 0004161838 scopus 로고    scopus 로고
    • Press, W. H, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery Eds, February, Cambridge University Press
    • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (Eds.) (2002, February). Numerical Recipes in C+-: The Art of Scientific Computing. Cambridge University Press.
    • (2002) Numerical Recipes in C+-: The Art of Scientific Computing
  • 27
    • 34249833101 scopus 로고
    • Technical note: Q-Learning
    • Watkins, C. and P. Dayan (1992). Technical note: Q-Learning. Machine Learning 8, 279-292.
    • (1992) Machine Learning , vol.8 , pp. 279-292
    • Watkins, C.1    Dayan, P.2
  • 29
    • 0001387704 scopus 로고
    • Classifier fitness based on accuracy
    • Wilson, S. W. (1995). Classifier fitness based on accuracy. Evolutionary Computation 3(2), 149-175.
    • (1995) Evolutionary Computation , vol.3 , Issue.2 , pp. 149-175
    • Wilson, S.W.1
  • 31
    • 0042142404 scopus 로고    scopus 로고
    • Function approximation with a classifier system
    • L. Spector et al, Eds, San Francisco, CA, pp, Morgan Kaufmann
    • Wilson, S. W. (2001a). Function approximation with a classifier system. In L. Spector et al. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), San Francisco, CA, pp. 974-981. Morgan Kaufmann.
    • (2001) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001) , pp. 974-981
    • Wilson, S.W.1
  • 32
    • 84942897286 scopus 로고    scopus 로고
    • Mining oblique data with XCS
    • of, Springer-Verlag
    • Wilson, S. W. (2001b). Mining oblique data with XCS. Volume 1996 of Lecture Notes in Computer Science, pp. 158-174. Springer-Verlag.
    • (2001) Lecture Notes in Computer Science , vol.1996 , pp. 158-174
    • Wilson, S.W.1
  • 33
    • 27144549349 scopus 로고    scopus 로고
    • Classifiers that approximate functions
    • Wilson, S. W. (2002). Classifiers that approximate functions. Journal of Natural Computing 1(2-3), 211-234.
    • (2002) Journal of Natural Computing , vol.1 , Issue.2-3 , pp. 211-234
    • Wilson, S.W.1
  • 34
    • 35048875188 scopus 로고    scopus 로고
    • Classifier systems for continuous payoff environments
    • K. Deb et al, Eds, Proceedings of the Genetic and Evolutionary Computation COnference, GECCO-2004, Part II, of, Seattle, WA, pp, Springer-Verlag
    • Wilson, S. W. (2004). Classifier systems for continuous payoff environments. In K. Deb et al. (Eds.), Proceedings of the Genetic and Evolutionary Computation COnference - GECCO-2004, Part II, Volume 3103 of Lecture Notes in Computer Science, Seattle, WA, pp. 824-835. Springer-Verlag.
    • (2004) Lecture Notes in Computer Science , vol.3103 , pp. 824-835
    • Wilson, S.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.