-
1
-
-
0001036819
-
A class of distributions which includes the normal ones
-
Azzalini A. A class of distributions which includes the normal ones. Scand. J. Statist. 12 (1985) 171-178
-
(1985)
Scand. J. Statist.
, vol.12
, pp. 171-178
-
-
Azzalini, A.1
-
2
-
-
49549139345
-
The area above the ordinal dominance graph and the area below the receiver operating characteristic graphs
-
Bamber D. The area above the ordinal dominance graph and the area below the receiver operating characteristic graphs. J. Math. Psych. 12 (1975) 387-415
-
(1975)
J. Math. Psych.
, vol.12
, pp. 387-415
-
-
Bamber, D.1
-
5
-
-
0042760479
-
Some results on the proportional reversed hazard model
-
Crescenzo A.D. Some results on the proportional reversed hazard model. Statist. Probab. Lett. 50 (2000) 313-321
-
(2000)
Statist. Probab. Lett.
, vol.50
, pp. 313-321
-
-
Crescenzo, A.D.1
-
6
-
-
84947415803
-
An analysis of some failure data
-
Davis D.J. An analysis of some failure data. J. Amer. Statist. Assoc. 47 (1952) 113-150
-
(1952)
J. Amer. Statist. Assoc.
, vol.47
, pp. 113-150
-
-
Davis, D.J.1
-
7
-
-
21844501564
-
Demand for risky assets and the monotone probability ratio order
-
Eeckhoudt L., and Gollier C. Demand for risky assets and the monotone probability ratio order. J. Risk and Uncertainty 11 (1995) 113-122
-
(1995)
J. Risk and Uncertainty
, vol.11
, pp. 113-122
-
-
Eeckhoudt, L.1
Gollier, C.2
-
8
-
-
84950442000
-
Logistic regression, survival analysis, and the Kaplan-Meier curve
-
Efron B. Logistic regression, survival analysis, and the Kaplan-Meier curve. J. Amer. Statist. Assoc. 83 (1988) 414-425
-
(1988)
J. Amer. Statist. Assoc.
, vol.83
, pp. 414-425
-
-
Efron, B.1
-
9
-
-
0001785333
-
Fisher information in terms of hazard rate
-
Efron B., and Johnstone. Fisher information in terms of hazard rate. Ann. Statist. 18 (1990) 38-62
-
(1990)
Ann. Statist.
, vol.18
, pp. 38-62
-
-
Efron, B.1
Johnstone2
-
10
-
-
0012991217
-
On the reliability studies of a weighted inverse Gaussian model
-
Gupta R.C., and Akman O. On the reliability studies of a weighted inverse Gaussian model. J. Statist. Plann. Inference 48 (1995) 69-83
-
(1995)
J. Statist. Plann. Inference
, vol.48
, pp. 69-83
-
-
Gupta, R.C.1
Akman, O.2
-
11
-
-
0642311050
-
Estimation of critical points in the mixture inverse Gaussian model
-
Gupta R.C., and Akman O. Estimation of critical points in the mixture inverse Gaussian model. Statist. Papers 38 (1997) 445-452
-
(1997)
Statist. Papers
, vol.38
, pp. 445-452
-
-
Gupta, R.C.1
Akman, O.2
-
12
-
-
31244437976
-
Reliability studies of the skew normal distribution and its application to a strength stress model
-
Gupta R.C., and Brown N. Reliability studies of the skew normal distribution and its application to a strength stress model. Comm. Statist. Theory Methods 30 11 (2001) 2427-2445
-
(2001)
Comm. Statist. Theory Methods
, vol.30
, Issue.11
, pp. 2427-2445
-
-
Gupta, R.C.1
Brown, N.2
-
13
-
-
11444255079
-
Analyzing survival data by proportional reverses hazard model
-
Gupta R.C., and Wu H. Analyzing survival data by proportional reverses hazard model. Internat. J. Reliability and Appl. 2 1 (2001) 1-26
-
(2001)
Internat. J. Reliability and Appl.
, vol.2
, Issue.1
, pp. 1-26
-
-
Gupta, R.C.1
Wu, H.2
-
16
-
-
6544264428
-
Point and interval estimation of P (X < Y): the normal case with common coefficient of variation
-
Gupta R.C., Ramakrishnan S., and Zhou X. Point and interval estimation of P (X < Y): the normal case with common coefficient of variation. Ann. Inst. Statist. Math. 51 (1999) 571-584
-
(1999)
Ann. Inst. Statist. Math.
, vol.51
, pp. 571-584
-
-
Gupta, R.C.1
Ramakrishnan, S.2
Zhou, X.3
-
17
-
-
0347433655
-
′ y) in the multivariate normal case
-
′ y) in the multivariate normal case. Statistics 21 (1990) 91-97
-
(1990)
Statistics
, vol.21
, pp. 91-97
-
-
Gupta, R.D.1
Gupta, R.C.2
-
18
-
-
34447517963
-
-
Gupta, R.D., Gupta, R.C., 2007. Analyzing skewed data by power normal model. Test, to appear.
-
-
-
-
20
-
-
0035579732
-
Exponentiated exponential family; an alternative to gamma and Weibull
-
Gupta R.D., and Kundu D. Exponentiated exponential family; an alternative to gamma and Weibull. Biometrical J. 43 (2001) 117-130
-
(2001)
Biometrical J.
, vol.43
, pp. 117-130
-
-
Gupta, R.D.1
Kundu, D.2
-
21
-
-
0035631031
-
Generalized exponential distributions: different methods of estimation
-
Gupta R.D., and Kundu D. Generalized exponential distributions: different methods of estimation. J. Statist. Comput. Simulation 69 (2001) 315-338
-
(2001)
J. Statist. Comput. Simulation
, vol.69
, pp. 315-338
-
-
Gupta, R.D.1
Kundu, D.2
-
22
-
-
0842293899
-
Generalized exponential distributions: statistical inferences
-
Gupta R.D., and Kundu D. Generalized exponential distributions: statistical inferences. J. Statist. Theory and Appl. 1 (2002) 101-118
-
(2002)
J. Statist. Theory and Appl.
, vol.1
, pp. 101-118
-
-
Gupta, R.D.1
Kundu, D.2
-
23
-
-
0038745921
-
Closeness of gamma and generalized exponential distribution
-
Gupta R.D., and Kundu D. Closeness of gamma and generalized exponential distribution. Comm. Statist. Theory Methods 32 4 (2003) 705-722
-
(2003)
Comm. Statist. Theory Methods
, vol.32
, Issue.4
, pp. 705-722
-
-
Gupta, R.D.1
Kundu, D.2
-
24
-
-
25644431692
-
α- and β-entropies and relative entropies of distributions
-
Gupta R.D., and Nanda A.K. α- and β-entropies and relative entropies of distributions. J. Statist. Theory and Appl. 1 3 (2002) 177-190
-
(2002)
J. Statist. Theory and Appl.
, vol.1
, Issue.3
, pp. 177-190
-
-
Gupta, R.D.1
Nanda, A.K.2
-
25
-
-
31244433637
-
Some results on (reversed) hazard rate ordering
-
Gupta R.D., and Nanda A.K. Some results on (reversed) hazard rate ordering. Comm. Statist. Theory Methods 30 11 (2001) 2447-2458
-
(2001)
Comm. Statist. Theory Methods
, vol.30
, Issue.11
, pp. 2447-2458
-
-
Gupta, R.D.1
Nanda, A.K.2
-
26
-
-
11444270593
-
Some characterization results based on the (reversed) hazard rate function
-
Gupta R.D., Gupta R.C., and Sankaran P.G. Some characterization results based on the (reversed) hazard rate function. Comm. Statist.-Theory Methods 33 12 (2004) 3009-3031
-
(2004)
Comm. Statist.-Theory Methods
, vol.33
, Issue.12
, pp. 3009-3031
-
-
Gupta, R.D.1
Gupta, R.C.2
Sankaran, P.G.3
-
28
-
-
84891634833
-
Inference based on retrospective ascertainment: an analysis of the data on transfusion-related AIDS
-
Kalbfleisch J.D., and Lawless J.F. Inference based on retrospective ascertainment: an analysis of the data on transfusion-related AIDS. J. Amer. Statist. Assoc. 84 (1989) 360-372
-
(1989)
J. Amer. Statist. Assoc.
, vol.84
, pp. 360-372
-
-
Kalbfleisch, J.D.1
Lawless, J.F.2
-
29
-
-
0013496338
-
Stochastic orders and their application in financial optimization
-
Kijima M., and Ohnishi M. Stochastic orders and their application in financial optimization. Math. Methods in Oper. Res. 50 (1999) 351-372
-
(1999)
Math. Methods in Oper. Res.
, vol.50
, pp. 351-372
-
-
Kijima, M.1
Ohnishi, M.2
-
31
-
-
11444260925
-
Characterizations of the proportional (reversed) hazard model
-
Kundu D., and Gupta R.D. Characterizations of the proportional (reversed) hazard model. Comm. Statist.-Theory Methods 33 (2004) 3095-3102
-
(2004)
Comm. Statist.-Theory Methods
, vol.33
, pp. 3095-3102
-
-
Kundu, D.1
Gupta, R.D.2
-
32
-
-
21544459057
-
Estimation of P (Y < X) for generalized exponential distribution
-
Kundu D., and Gupta R.D. Estimation of P (Y < X) for generalized exponential distribution. Metrika 61 (2005) 291-308
-
(2005)
Metrika
, vol.61
, pp. 291-308
-
-
Kundu, D.1
Gupta, R.D.2
-
33
-
-
0002851890
-
The power of rank tests
-
Lehman E.L. The power of rank tests. Ann. of Math. Statist. 24 (1953) 28-43
-
(1953)
Ann. of Math. Statist.
, vol.24
, pp. 28-43
-
-
Lehman, E.L.1
-
34
-
-
25844505124
-
The exponentiated Weibull family: some properties and a flood data application
-
Mudholkar G.S., and Hutson A.D. The exponentiated Weibull family: some properties and a flood data application. Comm. Statist.-Theory Methods 25 12 (1996) 3059-3083
-
(1996)
Comm. Statist.-Theory Methods
, vol.25
, Issue.12
, pp. 3059-3083
-
-
Mudholkar, G.S.1
Hutson, A.D.2
-
35
-
-
0027608675
-
Exponentiated Weibull family for analyzing bathtub failure-rate data
-
Mudholkar G.S., and Srivastava D.K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliability 42 2 (1993) 299-302
-
(1993)
IEEE Trans. Reliability
, vol.42
, Issue.2
, pp. 299-302
-
-
Mudholkar, G.S.1
Srivastava, D.K.2
-
36
-
-
0029404196
-
The exponentiated Weibull family: a reanalysis of the bus-motor-failure data
-
Mudholkar G.S., Srivastava D.K., and Freimer M. The exponentiated Weibull family: a reanalysis of the bus-motor-failure data. Technometrics 37 4 (1995) 436-445
-
(1995)
Technometrics
, vol.37
, Issue.4
, pp. 436-445
-
-
Mudholkar, G.S.1
Srivastava, D.K.2
Freimer, M.3
-
38
-
-
0033149027
-
Logconcave and concave distributions in reliability
-
Sengupta D., and Nanda A.K. Logconcave and concave distributions in reliability. Naval Res. Logistics Quart. 46 4 (1999) 419-433
-
(1999)
Naval Res. Logistics Quart.
, vol.46
, Issue.4
, pp. 419-433
-
-
Sengupta, D.1
Nanda, A.K.2
-
39
-
-
0022965274
-
Alternative estimation procedures for Pr . (X < Y) in categorized data
-
Simonoff J.S., Hochberg Y., and Reiser B. Alternative estimation procedures for Pr . (X < Y) in categorized data. Biometrics 42 (1986) 895-907
-
(1986)
Biometrics
, vol.42
, pp. 895-907
-
-
Simonoff, J.S.1
Hochberg, Y.2
Reiser, B.3
-
40
-
-
0031468108
-
A distribution of tumor size at detection: an application to breast cancer data
-
Tsodikov A.D., Aselain B., and Yakovlev A.Y. A distribution of tumor size at detection: an application to breast cancer data. Biometrics 53 (1997) 1495-1502
-
(1997)
Biometrics
, vol.53
, pp. 1495-1502
-
-
Tsodikov, A.D.1
Aselain, B.2
Yakovlev, A.Y.3
-
43
-
-
0032188456
-
Log-odds rate and monotone log-odds rate distributions
-
Zimmer W.J., Yang Y., and Pathak P.K. Log-odds rate and monotone log-odds rate distributions. J. Quality Tech. 34 4 (1998) 376-385
-
(1998)
J. Quality Tech.
, vol.34
, Issue.4
, pp. 376-385
-
-
Zimmer, W.J.1
Yang, Y.2
Pathak, P.K.3
|