-
4
-
-
33644569330
-
-
For reviews, see: a
-
For reviews, see: a) A. C. Spivey, S. Arseniyadis, Angew. Chem. 2004, 116, 5552;
-
(2004)
Angew. Chem
, vol.116
, pp. 5552
-
-
Spivey, A.C.1
Arseniyadis, S.2
-
5
-
-
8444241193
-
-
Angew. Chem. Int. Ed. 2004, 43, 5436;
-
(2004)
Chem. Int. Ed
, vol.43
, pp. 5436
-
-
Angew1
-
9
-
-
0000733886
-
-
e) G. Höfle, W. Steglich, H. Vorbruggen, Angew. Chem. 1978, 90, 602;
-
(1978)
Angew. Chem
, vol.90
, pp. 602
-
-
Höfle, G.1
Steglich, W.2
Vorbruggen, H.3
-
11
-
-
0006633974
-
-
a) M. A. Hierl, E. P. Gamson, I. M. Klotz, J. Am. Chem. Soc. 1979, 101, 6020;
-
(1979)
J. Am. Chem. Soc
, vol.101
, pp. 6020
-
-
Hierl, M.A.1
Gamson, E.P.2
Klotz, I.M.3
-
12
-
-
0020087653
-
-
b) E. J. Delaney, L. Wood, I. M. Klotz, J. Am. Chem. Soc. 1982, 104, 799;
-
(1982)
J. Am. Chem. Soc
, vol.104
, pp. 799
-
-
Delaney, E.J.1
Wood, L.2
Klotz, I.M.3
-
13
-
-
0000798869
-
-
c) S. Shinkai, H. Tsuji, Y. Hara, O. Manabe, Bull. Chem. Soc. Jpn. 1981, 54, 631;
-
(1981)
Bull. Chem. Soc. Jpn
, vol.54
, pp. 631
-
-
Shinkai, S.1
Tsuji, H.2
Hara, Y.3
Manabe, O.4
-
14
-
-
0000525731
-
-
d) M. Tomoi, Y. Akada, H. Kakiuchi, Makromol. Chem. Rapid Commun. 1982, 3, 537;
-
(1982)
Makromol. Chem. Rapid Commun
, vol.3
, pp. 537
-
-
Tomoi, M.1
Akada, Y.2
Kakiuchi, H.3
-
17
-
-
0000882855
-
-
g) F. Guendouz, R. Jacquier, J. Verducci, Tetrahedron 1988, 44, 7095;
-
(1988)
Tetrahedron
, vol.44
, pp. 7095
-
-
Guendouz, F.1
Jacquier, R.2
Verducci, J.3
-
20
-
-
34447255741
-
-
j) G. Preim, B. Pelotier, S. J. F. Macdonald, M. S. Anson, I. B. Campbell, Synlett 2003, 679.
-
(2003)
Synlett
, pp. 679
-
-
Preim, G.1
Pelotier, B.2
Macdonald, S.J.F.3
Anson, M.S.4
Campbell, I.B.5
-
21
-
-
0141619399
-
-
For reviews, see: a
-
For reviews, see: a) M. Benaglia, A. Puglisi, F. Cozzi, Chem. Rev. 2003, 103, 3401;
-
(2003)
Chem. Rev
, vol.103
, pp. 3401
-
-
Benaglia, M.1
Puglisi, A.2
Cozzi, F.3
-
24
-
-
0025473068
-
-
a) S. Rubinsztajn, M. Zeldin, W. K. Fife, Macromolecules 1990, 23, 4026;
-
(1990)
Macromolecules
, vol.23
, pp. 4026
-
-
Rubinsztajn, S.1
Zeldin, M.2
Fife, W.K.3
-
25
-
-
0026155545
-
-
b) S. Rubinsztajn, M. Zeldin, W. K. Fife, Macromolecules 1991, 24, 2682.
-
(1991)
Macromolecules
, vol.24
, pp. 2682
-
-
Rubinsztajn, S.1
Zeldin, M.2
Fife, W.K.3
-
26
-
-
0036809927
-
-
General review: C. E. Song, S.-G. Lee, Chem. Rev. 2002, 102, 3495.
-
General review: C. E. Song, S.-G. Lee, Chem. Rev. 2002, 102, 3495.
-
-
-
-
27
-
-
25444501833
-
-
H.-T. Chen, S. Huh, J. W. Wiench, M. Pruski, V. S.-Y. Lin, J. Am. Chem. Soc. 2005, 127, 13305.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 13305
-
-
Chen, H.-T.1
Huh, S.2
Wiench, J.W.3
Pruski, M.4
Lin, V.S.-Y.5
-
28
-
-
34447287421
-
-
The authors reported a slow but appreciable rate of background acylation (33% yield compared to 93% for the catalyzed process) in the absence of catalyst under these conditions
-
The authors reported a slow but appreciable rate of background acylation (33% yield compared to 93% for the catalyzed process) in the absence of catalyst under these conditions.
-
-
-
-
29
-
-
34447278645
-
-
The catalyst is also an active promoter of the challenging Baylis-Hillman reaction at higher catalyst loadings 30 mol
-
The catalyst is also an active promoter of the challenging Baylis-Hillman reaction at higher catalyst loadings (30 mol%).
-
-
-
-
30
-
-
33747620750
-
-
K. E. Price, B. P. Mason, A. R. Bogdan, S. J. Broadwater, J. L. Steinbacher, D. T. McQuade, J. Am. Chem. Soc. 2006, 128, 10376.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 10376
-
-
Price, K.E.1
Mason, B.P.2
Bogdan, A.R.3
Broadwater, S.J.4
Steinbacher, J.L.5
McQuade, D.T.6
-
31
-
-
0037739323
-
-
For pioneering work on the development of highly active and recyclable homogeneous polymer-bound DMAP derivatives that can be precipitated/extracted after reaction, see: a D. E. Bergbreiter, P. L. Osburn, C. Li, Org. Lett. 2002, 4, 737;
-
For pioneering work on the development of highly active and recyclable homogeneous polymer-bound DMAP derivatives that can be precipitated/extracted after reaction, see: a) D. E. Bergbreiter, P. L. Osburn, C. Li, Org. Lett. 2002, 4, 737;
-
-
-
-
33
-
-
0037295452
-
-
a) T.-J. Yoon, W. Lee, Y.-S. Oh, J.-K. Lee, New J. Chem. 2003, 27, 227;
-
(2003)
New J. Chem
, vol.27
, pp. 227
-
-
Yoon, T.-J.1
Lee, W.2
Oh, Y.-S.3
Lee, J.-K.4
-
34
-
-
28044436230
-
-
b) A.-H. Lu, W. Schmidt, N. Matoussevitch, H. Bönnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schüth, Angew. Chem. 2004, 116, 4403;
-
(2004)
Angew. Chem
, vol.116
, pp. 4403
-
-
Lu, A.-H.1
Schmidt, W.2
Matoussevitch, N.3
Bönnemann, H.4
Spliethoff, B.5
Tesche, B.6
Bill, E.7
Kiefer, W.8
Schüth, F.9
-
35
-
-
4544353284
-
-
Angew. Chem. Int. Ed. 2004, 43, 4303;
-
(2004)
Chem. Int. Ed
, vol.43
, pp. 4303
-
-
Angew1
-
36
-
-
25444493164
-
-
c) H. M. R. Gardimalla, D. Mandal, P. D. Stevens, M. Yen, Y. Gao, Chem. Commun. 2005, 4432;
-
(2005)
Chem. Commun
, pp. 4432
-
-
Gardimalla, H.M.R.1
Mandal, D.2
Stevens, P.D.3
Yen, M.4
Gao, Y.5
-
37
-
-
24744435555
-
-
d) A. Hu, G. T. Yee, W. Lin, J. Am. Chem. Soc. 2005, 127, 12486;
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 12486
-
-
Hu, A.1
Yee, G.T.2
Lin, W.3
-
38
-
-
20444488124
-
-
e) P. D. Stevens, J. Fan, H. M. R. Gardimalla, M. Yen, T. Gao, Org. Lett. 2005, 7, 2085;
-
(2005)
Org. Lett
, vol.7
, pp. 2085
-
-
Stevens, P.D.1
Fan, J.2
Gardimalla, H.M.R.3
Yen, M.4
Gao, T.5
-
39
-
-
30744455085
-
-
f) Y. Zheng, P. D. Stevens, Y. Gao, J. Org. Chem. 2006, 71, 537;
-
(2006)
J. Org. Chem
, vol.71
, pp. 537
-
-
Zheng, Y.1
Stevens, P.D.2
Gao, Y.3
-
40
-
-
31544454997
-
-
g) D. Lee, J. Lee, H. Lee, S. Jin, T. Hyeon, B. M. Kim, Adv. Synth. Catal. 2006, 348, 41;
-
(2006)
Adv. Synth. Catal
, vol.348
, pp. 41
-
-
Lee, D.1
Lee, J.2
Lee, H.3
Jin, S.4
Hyeon, T.5
Kim, B.M.6
-
41
-
-
33646178608
-
-
h) R. Abu-Reziq, H. Alper, D. Wang, M. L. Post, J. Am. Chem. Soc. 2006, 128, 5279.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 5279
-
-
Abu-Reziq, R.1
Alper, H.2
Wang, D.3
Post, M.L.4
-
42
-
-
33751108971
-
-
During the preparation of this manuscript, an achiral magnetic-nanoparticle-supported phase-transfer catalyst based on a quaternary ammonium salt was reported for the butylation of sodium phenoxide at 100°C. The catalyst is active at a loading of 4 mol% and could be recycled four times with only a 5% reduction in yield: M. Kawamura, K. Sato, Chem. Commun. 2006, 4718.
-
During the preparation of this manuscript, an achiral magnetic-nanoparticle-supported phase-transfer catalyst based on a quaternary ammonium salt was reported for the butylation of sodium phenoxide at 100°C. The catalyst is active at a loading of 4 mol% and could be recycled four times with only a 5% reduction in yield: M. Kawamura, K. Sato, Chem. Commun. 2006, 4718.
-
-
-
-
43
-
-
34447283122
-
-
Calculated from X-ray diffraction (XRD) data, using the Debye-Scherrer equation: R. M. Cornell, U. Schwertmann, The Iron Oxides, Wiley-VCH, Weinheim, 1996.
-
Calculated from X-ray diffraction (XRD) data, using the Debye-Scherrer equation: R. M. Cornell, U. Schwertmann, The Iron Oxides, Wiley-VCH, Weinheim, 1996.
-
-
-
-
46
-
-
34447275777
-
-
See the Supporting Information for details
-
See the Supporting Information for details.
-
-
-
-
47
-
-
0028282273
-
-
A. P. Philipse, M. P. B. Vanbruggen, C. Pathmamanoharan, Langmuir 1994, 10, 92.
-
(1994)
Langmuir
, vol.10
, pp. 92
-
-
Philipse, A.P.1
Vanbruggen, M.P.B.2
Pathmamanoharan, C.3
-
48
-
-
34447269997
-
-
The nanoparticles were characterized by FTIR and Raman spectroscopy, XRD, and TEM. See the Supporting Information
-
The nanoparticles were characterized by FTIR and Raman spectroscopy, XRD, and TEM. See the Supporting Information.
-
-
-
-
49
-
-
0001588515
-
-
L. M. Liz-Marzan, M. Giersig, P. Mulvaney, Langmuir 1996, 12, 4329.
-
(1996)
Langmuir
, vol.12
, pp. 4329
-
-
Liz-Marzan, L.M.1
Giersig, M.2
Mulvaney, P.3
-
50
-
-
33646542359
-
-
A particular cause for potential concern in the current study would be the ammonium-cation-binding properties of uncoated Fe3O4 nanoparticles; all reactions catalyzed by DMAP pass through key pyridinium-ion intermediates, while nucleophile-catalyzed acylations of alcohols in the presence of a stoichiometric amine base generate ammonium salts. For a recent report detailing the binding of magnetite to ammonium cations, see: W. Li, C. Gao, H. Qian, J. Ren, D. Yan, J. Mater. Chem. 2006, 16, 1852
-
4 nanoparticles; all reactions catalyzed by DMAP pass through key pyridinium-ion intermediates, while nucleophile-catalyzed acylations of alcohols in the presence of a stoichiometric amine base generate ammonium salts. For a recent report detailing the binding of magnetite to ammonium cations, see: W. Li, C. Gao, H. Qian, J. Ren, D. Yan, J. Mater. Chem. 2006, 16, 1852.
-
-
-
-
51
-
-
34447283594
-
-
1 can be prepared in one step from commercially available 4-N-methylpyridine (Aldrich) and (3-chloropropyl)triethoxysilane. See reference [7] or the Supporting Information for details.
-
1 can be prepared in one step from commercially available 4-N-methylpyridine (Aldrich) and (3-chloropropyl)triethoxysilane. See reference [7] or the Supporting Information for details.
-
-
-
-
52
-
-
34447292189
-
-
Supplementary TEM images showing particle aggregates can be found in the Supporting Information
-
Supplementary TEM images showing particle aggregates can be found in the Supporting Information.
-
-
-
-
56
-
-
34447269766
-
-
Control reactions for the formation of 6, 10, 12, and 14 in the absence of 2 under otherwise identical conditions to those in Table 2 proceeded to 0, 0, 1, and 0% conversion respectively.
-
Control reactions for the formation of 6, 10, 12, and 14 in the absence of 2 under otherwise identical conditions to those in Table 2 proceeded to 0, 0, 1, and 0% conversion respectively.
-
-
-
-
57
-
-
34447291403
-
-
We have also found that an analogue of 2 prepared from the direct coupling of 1 with magnetite nanoparticles (without a silica layer) can serve as an active and recyclable acylation catalyst in the BOC protection of indole under conditions identical to those in Table 2, entries 7-9, In these experiments, 10 could be prepared from 9 in quantitative conversion in each of five consecutive cycles
-
We have also found that an analogue of 2 prepared from the direct coupling of 1 with magnetite nanoparticles (without a silica layer) can serve as an active and recyclable acylation catalyst in the BOC protection of indole (under conditions identical to those in Table 2, entries 7-9). In these experiments, 10 could be prepared from 9 in quantitative conversion in each of five consecutive cycles.
-
-
-
|