-
3
-
-
10844230994
-
Intrusion detection using an ensemble of intelligent paradigms
-
Mukkamala S, Sung AH, Abraham A. Intrusion detection using an ensemble of intelligent paradigms. Journal of Network and Computer Applications, 2005,28(2):167-182.
-
(2005)
Journal of Network and Computer Applications
, vol.28
, Issue.2
, pp. 167-182
-
-
Mukkamala, S.1
Sung, A.H.2
Abraham, A.3
-
4
-
-
19944364877
-
Feature deduction and ensemble design of intrusion detection systems
-
Chebrolu S, Abraham A, Thomas JP. Feature deduction and ensemble design of intrusion detection systems. Computer and Security, 2004,24(4):295-307.
-
(2004)
Computer and Security
, vol.24
, Issue.4
, pp. 295-307
-
-
Chebrolu, S.1
Abraham, A.2
Thomas, J.P.3
-
7
-
-
0038137315
-
Ensemble feature selection with the simple Bayesian classification
-
Tsymbal A, Puuronen S, Patterson DW. Ensemble feature selection with the simple Bayesian classification. Information Fusion, 2003,4(2):87-100.
-
(2003)
Information Fusion
, vol.4
, Issue.2
, pp. 87-100
-
-
Tsymbal, A.1
Puuronen, S.2
Patterson, D.W.3
-
11
-
-
0001953837
-
Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization
-
San Mateo: Morgan Kaufmann Publishers
-
Fonseca CM, Fleming PJ. Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proc. of the 5th Int'l Conf. on Genetic Algorithms (ICGA'93). San Mateo: Morgan Kaufmann Publishers, 1993. 416-423.
-
(1993)
Proc. of the 5th Int'l Conf. on Genetic Algorithms (ICGA'93)
, pp. 416-423
-
-
Fonseca, C.M.1
Fleming, P.J.2
-
12
-
-
0036567392
-
Ensemble neural networks: Many could be better than all
-
Zhou ZH, Wu JX, Tang W. Ensemble neural networks: Many could be better than all. Artificial Intelligence, 2002,137(1-2): 239-263.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.H.1
Wu, J.X.2
Tang, W.3
-
14
-
-
0031078007
-
Feature selection: Evaluation, application, and small sample performance
-
Jain A, Zongker D. Feature selection: Evaluation, application, and small sample performance. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1997,19(2):153-158.
-
(1997)
IEEE Trans. on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.2
, pp. 153-158
-
-
Jain, A.1
Zongker, D.2
-
15
-
-
0032028297
-
Feature subset selection using a genetic algorithm
-
Yang J, Honavar V. Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 1998,13(2):44-49.
-
(1998)
IEEE Intelligent Systems
, vol.13
, Issue.2
, pp. 44-49
-
-
Yang, J.1
Honavar, V.2
-
16
-
-
27144519762
-
Feature subset selection, class separability, and genetic algorithms
-
Berlin: Springer-Verlag
-
Cantu-Paz E. Feature subset selection, class separability, and genetic algorithms. In: Proc. of the Genetic and Evolutionary Computation Conf. (GECCO). Berlin: Springer-Verlag, 2004. 959-970.
-
(2004)
Proc. of the Genetic and Evolutionary Computation Conf. (GECCO)
, pp. 959-970
-
-
Cantu-Paz, E.1
-
17
-
-
0036530772
-
A fast and elitist multi-objective genetic algorithm: NSGA-II
-
Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation, 2002,6(2):182-197.
-
(2002)
IEEE Trans. on Evolutionary Computation
, vol.6
, Issue.2
, pp. 182-197
-
-
Deb, K.1
Pratap, A.2
Agarwal, S.3
Meyarivan, T.4
-
19
-
-
0000852513
-
Multiobjective optimization using nondominated sorting in genetic algorithms
-
Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1995, 2(3):221-248.
-
(1995)
Evolutionary Computation
, vol.2
, Issue.3
, pp. 221-248
-
-
Srinivas, N.1
Deb, K.2
-
20
-
-
0033640901
-
Comparison of algorithms that select features for pattern classifiers
-
Kudo M, Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition, 2000,33:25-41.
-
(2000)
Pattern Recognition
, vol.33
, pp. 25-41
-
-
Kudo, M.1
Sklansky, J.2
-
21
-
-
0033220764
-
Adaptive floating search methods in feature selection
-
Somol P, Pudil P, Novovicova J, Paclik P. Adaptive floating search methods in feature selection. Pattern Recognition Letters, 1999, 20(11-13):1157-1163.
-
(1999)
Pattern Recognition Letters
, vol.20
, Issue.11-13
, pp. 1157-1163
-
-
Somol, P.1
Pudil, P.2
Novovicova, J.3
Paclik, P.4
-
22
-
-
84885774862
-
A framework for constructing features and models for intrusion detection systems
-
Lee WK, Stolfo SJ. A framework for constructing features and models for intrusion detection systems. ACM Trans. on Information and System Security, 2000,3(4):227-261.
-
(2000)
ACM Trans. on Information and System Security
, vol.3
, Issue.4
, pp. 227-261
-
-
Lee, W.K.1
Stolfo, S.J.2
-
23
-
-
34147192817
-
KDD99 cup dataset
-
The UCI KDD Archive
-
The UCI KDD Archive. KDD99 cup dataset. 1999. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
-
(1999)
-
-
|