메뉴 건너뛰기




Volumn 341, Issue 3-4, 2007, Pages 186-195

A nonlinear rainfall-runoff model embedded with an automated calibration method - Part 1: The model

Author keywords

Artificial neural networks; Memory; Nonlinear model; Rainfall runoff model; Rainfall runoff process

Indexed keywords

COMPUTATIONAL METHODS; MATHEMATICAL MODELS; NEURAL NETWORKS; PROBLEM SOLVING; RUNOFF;

EID: 34447098052     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2007.05.009     Document Type: Article
Times cited : (15)

References (21)
  • 1
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • Chang F.J., Chang L.C., and Huang H.L. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes 16 13 (2002) 2577-2588
    • (2002) Hydrological Processes , vol.16 , Issue.13 , pp. 2577-2588
    • Chang, F.J.1    Chang, L.C.2    Huang, H.L.3
  • 2
    • 0842349306 scopus 로고    scopus 로고
    • A two-step-ahead recurrent neural network for stream-flow forecasting
    • Chang L.C., Chang F.J., and Chiang Y.M. A two-step-ahead recurrent neural network for stream-flow forecasting. Hydrological Processes 18 1 (2004) 81-92
    • (2004) Hydrological Processes , vol.18 , Issue.1 , pp. 81-92
    • Chang, L.C.1    Chang, F.J.2    Chiang, Y.M.3
  • 3
    • 1842426595 scopus 로고    scopus 로고
    • Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling
    • Chiang Y.M., Chang L.C., and Chang F.J. Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. Journal of Hydrology 290 3-4 (2004) 297-311
    • (2004) Journal of Hydrology , vol.290 , Issue.3-4 , pp. 297-311
    • Chiang, Y.M.1    Chang, L.C.2    Chang, F.J.3
  • 5
    • 0030497366 scopus 로고    scopus 로고
    • Physical interpretation and sensitivity analysis of the TOPMODEL
    • Franchini M., Wendling J., Obled C., and Todini E. Physical interpretation and sensitivity analysis of the TOPMODEL. Journal of Hydrology 175 1-4 (1996) 293-338
    • (1996) Journal of Hydrology , vol.175 , Issue.1-4 , pp. 293-338
    • Franchini, M.1    Wendling, J.2    Obled, C.3    Todini, E.4
  • 6
    • 0001920996 scopus 로고
    • MIKE 11 - a generalized river modelling package
    • Singh V.P. (Ed), Water Resources Publications, Colorado
    • Havnø K., Madsen M.N., and Dørge J. MIKE 11 - a generalized river modelling package. In: Singh V.P. (Ed). Computer Models of Watershed Hydrology (1995), Water Resources Publications, Colorado 733-782
    • (1995) Computer Models of Watershed Hydrology , pp. 733-782
    • Havnø, K.1    Madsen, M.N.2    Dørge, J.3
  • 8
    • 0029413797 scopus 로고
    • Artificial neural network modelling of the rainfall-runoff process
    • Hsu K.L., Gupta V.K., and Sorooshian S. Artificial neural network modelling of the rainfall-runoff process. Water Resources Research 31 10 (1995) 2517-2530
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, V.K.2    Sorooshian, S.3
  • 9
    • 0026613408 scopus 로고
    • River flow forecasting. Part 1. A discussion of principles
    • Kachroo R.K. River flow forecasting. Part 1. A discussion of principles. Journal of Hydrology 133 1-2 (1992) 1-15
    • (1992) Journal of Hydrology , vol.133 , Issue.1-2 , pp. 1-15
    • Kachroo, R.K.1
  • 10
    • 0038010337 scopus 로고    scopus 로고
    • A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media
    • Lallahem S., and Manniaa J. A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media. Mathematical and Computer Modelling 37 (2003) 1047-1061
    • (2003) Mathematical and Computer Modelling , vol.37 , pp. 1047-1061
    • Lallahem, S.1    Manniaa, J.2
  • 11
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • Lin G.F., and Chen L.H. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology 289 1-4 (2004) 1-8
    • (2004) Journal of Hydrology , vol.289 , Issue.1-4 , pp. 1-8
    • Lin, G.F.1    Chen, L.H.2
  • 12
    • 34447100952 scopus 로고    scopus 로고
    • Lin, G.F., Wang, C.M., 2007. A nonlinear rainfall-runoff model embedded with an automated calibration method. Part 2. The automated calibration method. Journal of Hydrology, doi:10.1016/j.jhydrol.2007.05.008.
  • 13
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • Luk K.C., Ball J.E., and Sharma A. A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting. Journal of Hydrology 227 1-4 (2000) 56-65
    • (2000) Journal of Hydrology , vol.227 , Issue.1-4 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 14
    • 0037090213 scopus 로고    scopus 로고
    • Comparison of different automated strategies for calibration of rainfall-runoff models
    • Madsen H., Wilson G., and Ammentorp C. Comparison of different automated strategies for calibration of rainfall-runoff models. Journal of Hydrology 261 1-4 (2002) 48-59
    • (2002) Journal of Hydrology , vol.261 , Issue.1-4 , pp. 48-59
    • Madsen, H.1    Wilson, G.2    Ammentorp, C.3
  • 15
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural network as rainfall-runoff models
    • Minns A.W., and Hall M.J. Artificial neural network as rainfall-runoff models. Hydrological Science Journal 41 3 (1996) 399-419
    • (1996) Hydrological Science Journal , vol.41 , Issue.3 , pp. 399-419
    • Minns, A.W.1    Hall, M.J.2
  • 16
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models. Part 1: a discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models. Part 1: a discussion of principles. Journal of Hydrology 10 3 (1970) 282-290
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 17
    • 0347135926 scopus 로고    scopus 로고
    • Modeling of the daily rainfall-runoff relationship with artificial neural network
    • Rajurkara M.P., Kothyarib U.C., and Chaubec U.C. Modeling of the daily rainfall-runoff relationship with artificial neural network. Journal of Hydrology 285 1-4 (2004) 96-113
    • (2004) Journal of Hydrology , vol.285 , Issue.1-4 , pp. 96-113
    • Rajurkara, M.P.1    Kothyarib, U.C.2    Chaubec, U.C.3
  • 18
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumar N., and Thandaveswara B.S. A non-linear rainfall-runoff model using an artificial neural network. Journal of Hydrology 216 1-2 (1999) 32-55
    • (1999) Journal of Hydrology , vol.216 , Issue.1-2 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 20
    • 0003223756 scopus 로고
    • Tank Model
    • Singh V.J. (Ed), Water Resources Publications, Highlands Ranch
    • Sugawara M. Tank Model. In: Singh V.J. (Ed). Computer Models of Watershed Hydrology (1995), Water Resources Publications, Highlands Ranch
    • (1995) Computer Models of Watershed Hydrology
    • Sugawara, M.1
  • 21
    • 0030483015 scopus 로고    scopus 로고
    • The ARNO rainfall-runoff model
    • Todini E. The ARNO rainfall-runoff model. Journal of Hydrology 175 1-4 (1996) 339-382
    • (1996) Journal of Hydrology , vol.175 , Issue.1-4 , pp. 339-382
    • Todini, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.