메뉴 건너뛰기




Volumn 19, Issue 5, 2004, Pages 595-597

Fuzzy kernel clustering self-adaptive algorithm

Author keywords

Feature space; Fuzzy C means; Mercer kernel; Validity measure function

Indexed keywords

DATA MINING; FUZZY SETS; LEARNING SYSTEMS;

EID: 3442877646     PISSN: 10010920     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (4)

References (5)
  • 3
    • 0032594954 scopus 로고    scopus 로고
    • Input space versus feature space in kernel-based methods
    • Scholkopf B, Mika S, Burges C, et al. Input space versus feature space in kernel-based methods [J]. IEEE Trans on Neural Networks, 1999, 10(5): 1000-1017.
    • (1999) IEEE Trans. on Neural Networks , vol.10 , Issue.5 , pp. 1000-1017
    • Scholkopf, B.1    Mika, S.2    Burges, C.3
  • 4
    • 0028667331 scopus 로고
    • New algorithms for solving the fuzzy c-means clustering problem
    • Kamel S Mohamed. New algorithms for solving the fuzzy c-means clustering problem [J]. Pattern Recognition, 1994, 27(3): 421-428.
    • (1994) Pattern Recognition , vol.27 , Issue.3 , pp. 421-428
    • Mohamed, K.S.1
  • 5
    • 0036565280 scopus 로고    scopus 로고
    • Mercer kernel based clustering in feature space
    • Girolami M. Mercer kernel based clustering in feature space [J]. IEEE Trans on Neural Network, 2002, 13(3): 780-784.
    • (2002) IEEE Trans. on Neural Network , vol.13 , Issue.3 , pp. 780-784
    • Girolami, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.