메뉴 건너뛰기




Volumn 54, Issue 6, 2007, Pages 517-521

Positive Realizations of Transfer Matrices with Real Poles

Author keywords

Minimal realizations; multivariable systems; positive realizations; transfer matrices

Indexed keywords

DATA COMMUNICATION SYSTEMS; DISCRETE TIME CONTROL SYSTEMS; IMPULSE RESPONSE; LINEAR SYSTEMS;

EID: 34347401222     PISSN: 15497747     EISSN: 15583791     Source Type: Journal    
DOI: 10.1109/TCSII.2007.894408     Document Type: Article
Times cited : (5)

References (18)
  • 1
    • 2942530941 scopus 로고    scopus 로고
    • A tutorial on the positive realization problem
    • May
    • L. Benvenuti and L. Farina, “A tutorial on the positive realization problem,” IEEE Trans. Autom. Contr., vol. 49, no. 5, pp. 651–664, May 2004.
    • (2004) IEEE Trans. Autom. Contr. , vol.49 , Issue.5 , pp. 651-664
    • Benvenuti, L.1    Farina, L.2
  • 2
    • 25844486947 scopus 로고    scopus 로고
    • Minimal positive realizations of transfer functions with nonnegative multiple poles
    • Sep.
    • B. Nagy and M. Matolcsi, “Minimal positive realizations of transfer functions with nonnegative multiple poles,” IEEE Trans. Autom. Contr., vol. 50, no. 9, pp. 1447–1450, Sep. 2005.
    • (2005) IEEE Trans. Autom. Contr. , vol.50 , Issue.9 , pp. 1447-1450
    • Nagy, B.1    Matolcsi, M.2
  • 5
    • 0003655699 scopus 로고    scopus 로고
    • Positive linear systems. Theory and applications
    • New York: Wiley
    • L. Farina and S. Rinaldi, “Positive linear systems. Theory and applications,” in Pure and Applied Mathematics. New York: Wiley, 2000.
    • (2000) Pure and Applied Mathematics
    • Farina, L.1    Rinaldi, S.2
  • 6
    • 17844394684 scopus 로고    scopus 로고
    • Minimal positive realizations for a class of transfer functions
    • Apr.
    • A. Halmschlager and M. Matolcsi, “Minimal positive realizations for a class of transfer functions,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 4, pp. 177–180, Apr. 2005.
    • (2005) IEEE Trans. Circuits Syst. II, Exp. Briefs , vol.52 , Issue.4 , pp. 177-180
    • Halmschlager, A.1    Matolcsi, M.2
  • 7
    • 0034396299 scopus 로고    scopus 로고
    • Nonnegative realizations of matrix transfer functions
    • K. H. Forster and B. Nagy, “Nonnegative realizations of matrix transfer functions,” Linear Algebra Its Appl., vol. 311, pp. 107–129, 2000.
    • (2000) Linear Algebra Its Appl. , vol.311 , pp. 107-129
    • Forster, K.H.1    Nagy, B.2
  • 8
    • 33750161768 scopus 로고    scopus 로고
    • On positive realizations of irreducible transfer matrices
    • R. Canto, B. Ricarte, and A. M. Urbano, “On positive realizations of irreducible transfer matrices,” Lecture Notes Contr. Inf. Sci., vol. 341, pp. 41–48, 2006.
    • (2006) Lecture Notes Contr. Inf. Sci. , vol.341 , pp. 41-48
    • Canto, R.1    Ricarte, B.2    Urbano, A.M.3
  • 9
    • 26644435284 scopus 로고    scopus 로고
    • Realization problem for positive discrete-time systems with delay
    • T. Kaczorek, “Realization problem for positive discrete-time systems with delay,” Syst. Sci., vol. 30, no. 4, pp. 17–30, 2005.
    • (2005) Syst. Sci. , vol.30 , Issue.4 , pp. 17-30
    • Kaczorek, T.1
  • 10
    • 27644540043 scopus 로고    scopus 로고
    • Realization problem for positive continuous-time systems with delays
    • Las Vegas, NV
    • T. Kaczorek, “Realization problem for positive continuous-time systems with delays,” in Proc. Int. Conf. Systems Engineering, Las Vegas, NV, 2005.
    • (2005) Proc. Int. Conf. Systems Engineering
    • Kaczorek, T.1
  • 11
    • 0038379341 scopus 로고    scopus 로고
    • Bounds on the size of minimal nonnegative realizations for discrete-time LTI systems
    • C. Hadjicostis, “Bounds on the size of minimal nonnegative realizations for discrete-time LTI systems,” Syst. Contr. Lett., vol. 37, pp. 39–43, 1999.
    • (1999) Syst. Contr. Lett. , vol.37 , pp. 39-43
    • Hadjicostis, C.1
  • 12
    • 84902032128 scopus 로고    scopus 로고
    • Algebraic properties of irreducible transfer matrices
    • pt. 1
    • B. P. Lampe and E. N. Rosenwasser, “Algebraic properties of irreducible transfer matrices,” Autom. Remote Control, vol. 61, no. 7, pt. 1, pp. 1091–1102, 2000.
    • (2000) Autom. Remote Control , vol.61 , Issue.7 , pp. 1091-1102
    • Lampe, B.P.1    Rosenwasser, E.N.2
  • 13
    • 34347389148 scopus 로고
    • Discrete stabilization of linear continuous-time plants part I. Algebraic theory of complete linear plants
    • Y. N. Rossenvasser, “Discrete stabilization of linear continuous-time plants part I. Algebraic theory of complete linear plants,” Autom. Remote Control, vol. 55, no. 7, pp. 974–987, 1994.
    • (1994) Autom. Remote Control , vol.55 , Issue.7 , pp. 974-987
    • Rossenvasser, Y.N.1
  • 14
    • 84904240252 scopus 로고    scopus 로고
    • Factorization of rational matrices in sampled-data systems design
    • B. P. Lampe and E. N. Rosenwasser, “Factorization of rational matrices in sampled-data systems design,” Autom. Remote Control, vol. 62, no. 6, pp. 919–933, 2001.
    • (2001) Autom. Remote Control , vol.62 , Issue.6 , pp. 919-933
    • Lampe, B.P.1    Rosenwasser, E.N.2
  • 15
    • 0010830612 scopus 로고    scopus 로고
    • Divisibility of minors of transfer matrices in electrical circuits
    • T. Kaczorek, “Divisibility of minors of transfer matrices in electrical circuits,” Przeglad Elektrotech., vol. 11, pp. 297–302, 2001.
    • (2001) Przeglad Elektrotech. , vol.11 , pp. 297-302
    • Kaczorek, T.1
  • 18
    • 34347401361 scopus 로고    scopus 로고
    • Structure decomposition and computation of minimal realization of normal transfer matrix of positive systems
    • Leuven, Belgium
    • T. Kaczorek, “Structure decomposition and computation of minimal realization of normal transfer matrix of positive systems,” in Proc. 6th MTNS, Leuven, Belgium, 2004.
    • (2004) Proc. 6th MTNS
    • Kaczorek, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.