메뉴 건너뛰기




Volumn 23, Issue 3, 2007, Pages 379-387

Neural network algorithm for coffee ripeness evaluation using airborne images

Author keywords

Coffee arabica L.; Model inversion; Neural networks; Radiative transfer; Remote sensing; Ripeness evaluation

Indexed keywords

ALGORITHMS; HARVESTING; NEURAL NETWORKS; RADIATIVE TRANSFER; REFLECTION; REMOTE SENSING; UNMANNED AERIAL VEHICLES (UAV);

EID: 34347210668     PISSN: 08838542     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (21)

References (38)
  • 1
    • 0032004712 scopus 로고    scopus 로고
    • Forward and inverse modeling of canopy directional reflectance using a neural network
    • Abuelgasim, A. A., S. Gopal, and A. H. Strahler. 1998. Forward and inverse modeling of canopy directional reflectance using a neural network. Int'l. J. Remote Sensing 19(3): 453-471.
    • (1998) Int'l. J. Remote Sensing , vol.19 , Issue.3 , pp. 453-471
    • Abuelgasim, A.A.1    Gopal, S.2    Strahler, A.H.3
  • 3
    • 4544266860 scopus 로고    scopus 로고
    • Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models
    • Atzberger, C. 2004. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models. Remote Sensing of Environment 93(1): 53-67.
    • (2004) Remote Sensing of Environment , vol.93 , Issue.1 , pp. 53-67
    • Atzberger, C.1
  • 4
    • 33751337343 scopus 로고    scopus 로고
    • Neural network estimation of LAI, fPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: Principles and validation
    • Bacour, C., F. Baret, D. Beal, M. Weiss, and K. Pavageau. 2006. Neural network estimation of LAI, fPAR, fCover and LAIxCab, from top of canopy MERIS reflectance data: Principles and validation. Remote Sensing of Environment 105(4): 313-325.
    • (2006) Remote Sensing of Environment , vol.105 , Issue.4 , pp. 313-325
    • Bacour, C.1    Baret, F.2    Beal, D.3    Weiss, M.4    Pavageau, K.5
  • 5
    • 0028995295 scopus 로고
    • The robustness of canopy gap fraction estimates from red and near-infrared reflectances: A comparison of approaches
    • Baret, F., J. Clevers, and M. D. Steven. 1995. The robustness of canopy gap fraction estimates from red and near-infrared reflectances: a comparison of approaches. Remote Sensing of Environment 54(2): 141-151.
    • (1995) Remote Sensing of Environment , vol.54 , Issue.2 , pp. 141-151
    • Baret, F.1    Clevers, J.2    Steven, M.D.3
  • 8
    • 0036214130 scopus 로고    scopus 로고
    • Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements
    • Chen, J. M., G. Pavlic, L. Brown, J. Cihlar, S. G. Leblanc, and H. P. White, et al.. 2002. Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements. Remote Sensing of Environment 80(1): 165-184.
    • (2002) Remote Sensing of Environment , vol.80 , Issue.1 , pp. 165-184
    • Chen, J.M.1    Pavlic, G.2    Brown, L.3    Cihlar, J.4    Leblanc, S.G.5    White, H.P.6
  • 9
    • 0037211652 scopus 로고    scopus 로고
    • Retrieval of canopy biophysical variables from bidirectional reflectance using prior information to solve the ill-posed inverse problem
    • Combal, B., F. Baret, M. Weiss, A. Tribuil, D. Mace, A. Pragnere, R. Myneni, Y. Knyazikhin, and L. Wang. 2002. Retrieval of canopy biophysical variables from bidirectional reflectance using prior information to solve the ill-posed inverse problem. Remote Sensing of Environment 84(1): 1-15.
    • (2002) Remote Sensing of Environment , vol.84 , Issue.1 , pp. 1-15
    • Combal, B.1    Baret, F.2    Weiss, M.3    Tribuil, A.4    Mace, D.5    Pragnere, A.6    Myneni, R.7    Knyazikhin, Y.8    Wang, L.9
  • 10
    • 0346245213 scopus 로고    scopus 로고
    • Training a neural network with a canopy refectance model to estimate crop leaf area index
    • Danson, F. M., C. S. Rowland, and F. Baret. 2003. Training a neural network with a canopy refectance model to estimate crop leaf area index. Int'l J. Remote Sensing 24(23): 4891-4905.
    • (2003) Int'l J. Remote Sensing , vol.24 , Issue.23 , pp. 4891-4905
    • Danson, F.M.1    Rowland, C.S.2    Baret, F.3
  • 12
    • 84907196725 scopus 로고    scopus 로고
    • Sources of uncertainty in the prediction of LAI/fPAR from MODIS. American Geophysical Union
    • Dec. 6-10, San Francisco, Calif
    • Dungan, J. L., and B. D. Ganapol. 2002. Sources of uncertainty in the prediction of LAI/fPAR from MODIS. American Geophysical Union, Fall Meeting, Dec. 6-10, San Francisco, Calif.
    • (2002) Fall Meeting
    • Dungan, J.L.1    Ganapol, B.D.2
  • 13
    • 34347216069 scopus 로고    scopus 로고
    • Furfaro, R. 2004, Radiative transport in plant canopies: Forward and inverse problem for UAV applications. PhD diss. Tucson, Ariz.: University of Arizona, Department of Aerospace and Mechanical Engineering.
    • Furfaro, R. 2004, Radiative transport in plant canopies: Forward and inverse problem for UAV applications. PhD diss. Tucson, Ariz.: University of Arizona, Department of Aerospace and Mechanical Engineering.
  • 14
    • 33244494810 scopus 로고    scopus 로고
    • Model-based neural network algorithm for coffee ripeness prediction using Helios UAV aerial images
    • Bellingham, Wash, Int'l. Soc. Optical Engineering
    • Furfaro, R., B. D. Ganapol, L. F. Johnson, and S. R. Herwitz. 2005. Model-based neural network algorithm for coffee ripeness prediction using Helios UAV aerial images. In Proc. SPIE Int'l. Symp. Remote Sensing. Bellingham, Wash.: Int'l. Soc. Optical Engineering.
    • (2005) Proc. SPIE Int'l. Symp. Remote Sensing
    • Furfaro, R.1    Ganapol, B.D.2    Johnson, L.F.3    Herwitz, S.R.4
  • 17
    • 1142281880 scopus 로고    scopus 로고
    • DART: A 3D model for simulating satellite images and studying surface radiation budget
    • Gastellu-Etchegorry, J. P., E. Martin, and F. Gascon. 2004. DART: a 3D model for simulating satellite images and studying surface radiation budget. Int. J. Remote Sensing 25(1): 73-96.
    • (2004) Int. J. Remote Sensing , vol.25 , Issue.1 , pp. 73-96
    • Gastellu-Etchegorry, J.P.1    Martin, E.2    Gascon, F.3
  • 18
    • 34347216790 scopus 로고    scopus 로고
    • Goel, N. S. 1989. Inversion of canopy reflectance for estimation of biophysical parameters from reflectance data. In Theory and Applications of Optical Remote Sensing, ed. G. Asrar, 205-211. New York: Wiley.
    • Goel, N. S. 1989. Inversion of canopy reflectance for estimation of biophysical parameters from reflectance data. In Theory and Applications of Optical Remote Sensing, ed. G. Asrar, 205-211. New York: Wiley.
  • 20
    • 84896878199 scopus 로고    scopus 로고
    • Precision agriculture as a commercial application for solar powered unmanned aerial vehicles
    • Portsmouth, Va, American Inst. Aeronautics and Astronautics
    • Herwitz, S. R., L. F. Johnson, J. Arvesen, R. G. Higgins, J. G. Leung, and S. L. Dunagan. 2002. Precision agriculture as a commercial application for solar powered unmanned aerial vehicles. In Proc. 1st AIAA UAV Conf. Portsmouth, Va.: American Inst. Aeronautics and Astronautics.
    • (2002) Proc. 1st AIAA UAV Conf
    • Herwitz, S.R.1    Johnson, L.F.2    Arvesen, J.3    Higgins, R.G.4    Leung, J.G.5    Dunagan, S.L.6
  • 22
    • 0004097360 scopus 로고
    • Leaf Optical Properties Experiment 93 (LOPEX93)
    • Report EUR-16095-EN, Luxembourg: European Commission
    • Hosgood, B., S. Jacquemoud, G. Andreoli, J. Verdebout, G. Pedrini, and G. Schmuck. 1995. Leaf Optical Properties Experiment 93 (LOPEX93). Report EUR-16095-EN, Luxembourg: European Commission.
    • (1995)
    • Hosgood, B.1    Jacquemoud, S.2    Andreoli, G.3    Verdebout, J.4    Pedrini, G.5    Schmuck, G.6
  • 23
    • 0031144286 scopus 로고    scopus 로고
    • Inversion of a physically-based bidirectional reflectance model of vegetation
    • Iaquinta, J., B. Pinty, and J. Privette. 1997. Inversion of a physically-based bidirectional reflectance model of vegetation. IEEE Trans. Geoscience and Remote Sensing 35(3): 687-698.
    • (1997) IEEE Trans. Geoscience and Remote Sensing , vol.35 , Issue.3 , pp. 687-698
    • Iaquinta, J.1    Pinty, B.2    Privette, J.3
  • 24
    • 0034478693 scopus 로고    scopus 로고
    • Comparison of four radiative transfer models to simulate plat canopies reflectance: Direct and inverse mode
    • Jacquemoud, S., C. Bacour, H. Poilve, and J. P. Frangi. 2000. Comparison of four radiative transfer models to simulate plat canopies reflectance: Direct and inverse mode. Remote Sensing of Environment 74(3): 471-481.
    • (2000) Remote Sensing of Environment , vol.74 , Issue.3 , pp. 471-481
    • Jacquemoud, S.1    Bacour, C.2    Poilve, H.3    Frangi, J.P.4
  • 25
    • 14644435774 scopus 로고    scopus 로고
    • Feasibility of monitoring coffee field ripeness with airborne multispectral imagery
    • Johnson, L. F., S. R. Herwitz, B. M. Lobitz, and S. L. Dunagan. 2004. Feasibility of monitoring coffee field ripeness with airborne multispectral imagery. Applied Engineering in Agriculture 20(6): 845-849.
    • (2004) Applied Engineering in Agriculture , vol.20 , Issue.6 , pp. 845-849
    • Johnson, L.F.1    Herwitz, S.R.2    Lobitz, B.M.3    Dunagan, S.L.4
  • 26
    • 0032552629 scopus 로고    scopus 로고
    • Attributes of neural networks for extracting continuous variables from optical and radar measurements
    • Kimes, D. S., and R. F. Nelson. 1998. Attributes of neural networks for extracting continuous variables from optical and radar measurements. Int'l. J. Remote Sensing 19(14): 2639-2663.
    • (1998) Int'l. J. Remote Sensing , vol.19 , Issue.14 , pp. 2639-2663
    • Kimes, D.S.1    Nelson, R.F.2
  • 28
    • 0037379613 scopus 로고    scopus 로고
    • Some neural network applications in environmental sciences. Part II: Advancing computational efficiency of environmental models
    • Krasnopolsky, V. M., and F. Chevallier. 2003. Some neural network applications in environmental sciences. Part II: Advancing computational efficiency of environmental models. Neural Networks 16(3): 335-348.
    • (2003) Neural Networks , vol.16 , Issue.3 , pp. 335-348
    • Krasnopolsky, V.M.1    Chevallier, F.2
  • 29
    • 0035187124 scopus 로고    scopus 로고
    • A neural network for setting target corn yields
    • Liu, J., C. E. Goering, and L. Tian. 2001. A neural network for setting target corn yields. Transactions of the ASAE 44(3): 705-713.
    • (2001) Transactions of the ASAE , vol.44 , Issue.3 , pp. 705-713
    • Liu, J.1    Goering, C.E.2    Tian, L.3
  • 30
    • 0023470975 scopus 로고
    • Light scattering in plant canopies: The method of Successive Orders of Scattering Approximations [SOSA]
    • Myneni, R. B., G. Asrar, and E. T. Kanemasu. 1987. Light scattering in plant canopies: the method of Successive Orders of Scattering Approximations [SOSA]. Agricultural and Forest Meteorology 39(1): 1-12.
    • (1987) Agricultural and Forest Meteorology , vol.39 , Issue.1 , pp. 1-12
    • Myneni, R.B.1    Asrar, G.2    Kanemasu, E.T.3
  • 32
    • 2942723813 scopus 로고
    • Variability for flower production, fruit set and fruit drop in some varieties of Coffee Arabica L
    • Reddy, G. S. T., and C. S. Srinivasan. 1979. Variability for flower production, fruit set and fruit drop in some varieties of Coffee Arabica L. Coffee Research 9(2): 27-34.
    • (1979) Coffee Research , vol.9 , Issue.2 , pp. 27-34
    • Reddy, G.S.T.1    Srinivasan, C.S.2
  • 33
    • 31344449225 scopus 로고    scopus 로고
    • Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data
    • Schlerf, M., and C. Atzberger. 2006. Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sensing of Environment 100(3): 281-294.
    • (2006) Remote Sensing of Environment , vol.100 , Issue.3 , pp. 281-294
    • Schlerf, M.1    Atzberger, C.2
  • 34
    • 0032732676 scopus 로고    scopus 로고
    • The use of the empirical line method to calibrate remotely sensed data to reflectance
    • Smith, G. M., and E. J. Milton, 1999. The use of the empirical line method to calibrate remotely sensed data to reflectance, Int'l. J. Remote Sensing 20(13): 2653-2662.
    • (1999) Int'l. J. Remote Sensing , vol.20 , Issue.13 , pp. 2653-2662
    • Smith, G.M.1    Milton, E.J.2
  • 36
    • 0027664618 scopus 로고
    • LAI inversion using a back-propagation neural network trained with a multiple scattering model
    • Smith, J. A. 1993. LAI inversion using a back-propagation neural network trained with a multiple scattering model. IEEE Trans. Geosci. & Rem. Sens. 31(5): 1102-1106.
    • (1993) IEEE Trans. Geosci. & Rem. Sens , vol.31 , Issue.5 , pp. 1102-1106
    • Smith, J.A.1
  • 37
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8(2): 127-150.
    • (1979) Remote Sensing of Environment , vol.8 , Issue.2 , pp. 127-150
    • Tucker, C.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.