메뉴 건너뛰기




Volumn 21, Issue 4, 2007, Pages 693-708

A multistage rule induction algorithm in classification

Author keywords

Classification; Granular computing; Information system; Rough set; Rule induction

Indexed keywords

APPROXIMATION THEORY; CLASSIFICATION (OF INFORMATION); HIERARCHICAL SYSTEMS; INFORMATION SYSTEMS; ROUGH SET THEORY; STRATEGIC PLANNING;

EID: 34250839664     PISSN: 02180014     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218001407005624     Document Type: Article
Times cited : (3)

References (31)
  • 2
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • C. L. Blake and C. J. Merz, UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, CA (1998) http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (1998) UCI repository of machine learning databases
    • Blake, C.L.1    Merz, C.J.2
  • 3
    • 0030362553 scopus 로고    scopus 로고
    • Lazy decision trees
    • eds. H. Shrobe and T. Senator, AAAI Press/The MIT Press
    • J. H. Friedman, R. Kohavi and Y. Yun, Lazy decision trees, Proc. AAAI96 and IAAI96, eds. H. Shrobe and T. Senator, 1 (AAAI Press/The MIT Press, 1996), pp. 717-724.
    • (1996) Proc. AAAI96 and IAAI96 , vol.1 , pp. 717-724
    • Friedman, J.H.1    Kohavi, R.2    Yun, Y.3
  • 4
    • 35048890498 scopus 로고    scopus 로고
    • Data, with missing attribute values: Generalization of indiscernibility relation and rule induction
    • eds. J. F. Peters and A. Skowron Springer
    • J. W. Grzymala-Busse, Data, with missing attribute values: generalization of indiscernibility relation and rule induction, Transactions on Rough Sets I, eds. J. F. Peters and A. Skowron (Springer, 2004), pp. 78-95.
    • (2004) Transactions on Rough Sets I , pp. 78-95
    • Grzymala-Busse, J.W.1
  • 5
    • 4444353068 scopus 로고    scopus 로고
    • A comparison of several approaches to missing attribute values in data mining
    • eds. W. Ziarko and Y. Yao Springer
    • J. W. Grzymala-Busse and M. Hu, A comparison of several approaches to missing attribute values in data mining, Rough Sets and Current Trends in Computing 2000, eds. W. Ziarko and Y. Yao (Springer, 2001), pp. 378-385.
    • (2001) Rough Sets and Current Trends in Computing 2000 , pp. 378-385
    • Grzymala-Busse, J.W.1    Hu, M.2
  • 6
    • 0032180332 scopus 로고    scopus 로고
    • Rough computational methods for information systems
    • J. W. Guan and D. A. Bell, Rough computational methods for information systems, Artif. Intell. 105 (1998) 77-103.
    • (1998) Artif. Intell , vol.105 , pp. 77-103
    • Guan, J.W.1    Bell, D.A.2
  • 7
    • 0036567302 scopus 로고    scopus 로고
    • Learning rules from incomplete training examples by rough sets
    • T. P. Hong, L. H. Tseng and S. L. Wang, Learning rules from incomplete training examples by rough sets, Expert Systems Appl. 22 (2002) 285-293.
    • (2002) Expert Systems Appl , vol.22 , pp. 285-293
    • Hong, T.P.1    Tseng, L.H.2    Wang, S.L.3
  • 10
    • 0033079944 scopus 로고    scopus 로고
    • Rules in incomplete information systems
    • M. Kryszkiewicz, Rules in incomplete information systems, Inform. Sci. 113 (1999) 271-292.
    • (1999) Inform. Sci , vol.113 , pp. 271-292
    • Kryszkiewicz, M.1
  • 11
    • 34250876927 scopus 로고    scopus 로고
    • Data decomposition and decision rule joining for classification of data with missing values
    • eds. J. F. Peters and A. Skowron Springer
    • R. Latkowski and M. Mikołajczyk, Data decomposition and decision rule joining for classification of data with missing values, Transactions on Rough Sets I, eds. J. F. Peters and A. Skowron (Springer, 2004), pp. 299-320.
    • (2004) Transactions on Rough Sets I , pp. 299-320
    • Latkowski, R.1    Mikołajczyk, M.2
  • 12
    • 9444221426 scopus 로고    scopus 로고
    • Heuristically fast finding of the shortest reducts
    • eds. S. Tsumoto et al, Springer, Berlin
    • T. Y. Lin and P. Yin, Heuristically fast finding of the shortest reducts, Rough Sets and Current Trends in Computing 2004, 2004, eds. S. Tsumoto et al. (Springer, Berlin, 2004), pp. 465-470.
    • (2004) Rough Sets and Current Trends in Computing 2004, 2004 , pp. 465-470
    • Lin, T.Y.1    Yin, P.2
  • 15
    • 0000494080 scopus 로고    scopus 로고
    • Rough mereology: A new paradigm for approximate reasoning
    • L. Polkowski and A. Skowron, Rough mereology: a new paradigm for approximate reasoning, Int. J. Approx. Reas. 15 (1996), pp. 333-365.
    • (1996) Int. J. Approx. Reas , vol.15 , pp. 333-365
    • Polkowski, L.1    Skowron, A.2
  • 16
    • 84942925223 scopus 로고    scopus 로고
    • About tolerance and similarity relations in information systems
    • eds. J. J. Alpigini et al
    • J. A. Pomykala, About tolerance and similarity relations in information systems, Rough Sets and Current Trends in Computing 2002, eds. J. J. Alpigini et al. (2002), pp. 175-182.
    • (2002) Rough Sets and Current Trends in Computing 2002 , pp. 175-182
    • Pomykala, J.A.1
  • 23
    • 33646163895 scopus 로고    scopus 로고
    • Entropy-based fuzzy rough classification approach for extracting classification rules
    • Y. C. Tsai, C. H. Cheng and J. R. Chang, Entropy-based fuzzy rough classification approach for extracting classification rules, Exp. Syst. Appl. 31 (2006) 436-443.
    • (2006) Exp. Syst. Appl , vol.31 , pp. 436-443
    • Tsai, Y.C.1    Cheng, C.H.2    Chang, J.R.3
  • 24
    • 0037316513 scopus 로고    scopus 로고
    • Automated extraction of hierarchical decision rules from clinical databases using rough set model
    • S. Tsumoto, Automated extraction of hierarchical decision rules from clinical databases using rough set model, Expert Syst. Appl. 24 (2003) 189-197.
    • (2003) Expert Syst. Appl , vol.24 , pp. 189-197
    • Tsumoto, S.1
  • 25
    • 16244416222 scopus 로고    scopus 로고
    • On acquiring classification knowledge from noisy data based on rough sets
    • F. H. Wang, On acquiring classification knowledge from noisy data based on rough sets, Exp. Syst. Appl. 29 (2005) 49-64.
    • (2005) Exp. Syst. Appl , vol.29 , pp. 49-64
    • Wang, F.H.1
  • 26
    • 0034141170 scopus 로고    scopus 로고
    • Classificatory filtering in decision systems
    • H. Wang, I. Düntsch and G. Gediga, Classificatory filtering in decision systems, Int. J. Approx. Reas. 23 (2000) 111-136.
    • (2000) Int. J. Approx. Reas , vol.23 , pp. 111-136
    • Wang, H.1    Düntsch, I.2    Gediga, G.3
  • 29
    • 0035163419 scopus 로고    scopus 로고
    • On modeling data mining with granular computing
    • Y. Y. Yao, On modeling data mining with granular computing, Proc. COMPSAC 2001 (2001), pp. 638-643.
    • (2001) Proc. COMPSAC 2001 , pp. 638-643
    • Yao, Y.Y.1
  • 30
    • 0000036690 scopus 로고    scopus 로고
    • Rule discovery by soft induction techniques
    • N. Zhong, J. Dong and S. Ohsuga, Rule discovery by soft induction techniques, Neurocomputing 36 (2001) 171-204.
    • (2001) Neurocomputing , vol.36 , pp. 171-204
    • Zhong, N.1    Dong, J.2    Ohsuga, S.3
  • 31
    • 0027543613 scopus 로고
    • Variable precision rough set model
    • W. Ziarko, Variable precision rough set model, J. Comput. Syst. Sci. 46 (1993) 39-59.
    • (1993) J. Comput. Syst. Sci , vol.46 , pp. 39-59
    • Ziarko, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.