-
2
-
-
0024680419
-
Adaptive aggregation methods for infinite horizon dynamic programming
-
Bertsekas, D., & Castañon, D. (1989). Adaptive aggregation methods for infinite horizon dynamic programming. IEEE Transactions on Automatic Control, 34, 589-598.
-
(1989)
IEEE Transactions on Automatic Control
, vol.34
, pp. 589-598
-
-
Bertsekas, D.1
Castañon, D.2
-
3
-
-
0036832950
-
Technical update: Least-squares temporal difference learning
-
Boyan, J. (2002). Technical update: Least-squares temporal difference learning. Machine Learning.
-
(2002)
Machine Learning
-
-
Boyan, J.1
-
4
-
-
0001771345
-
Linear least-squares algorithms for temporal difference learning
-
Bradtke, S., & Barto, A. (1996). Linear least-squares algorithms for temporal difference learning. Machine Learning, 22, 33-57.
-
(1996)
Machine Learning
, vol.22
, pp. 33-57
-
-
Bradtke, S.1
Barto, A.2
-
5
-
-
63249106662
-
Experiments with random projections for machine learning
-
Fradkin, D., & Madigan, D. (2003). Experiments with random projections for machine learning. In Proc. of KDD.
-
(2003)
Proc. of KDD
-
-
Fradkin, D.1
Madigan, D.2
-
6
-
-
84898993653
-
Neighbourhood components analysis
-
Goldberger, J., Roweis, S., Hinton, G., & Salakhutdinov, R. (2005). Neighbourhood components analysis. In NIPS 17, 513-520.
-
(2005)
NIPS 17
, pp. 513-520
-
-
Goldberger, J.1
Roweis, S.2
Hinton, G.3
Salakhutdinov, R.4
-
7
-
-
0024137490
-
Increased rates of convergence through learning rate adaptation
-
Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural Networks, 1, 295-307.
-
(1988)
Neural Networks
, vol.1
, pp. 295-307
-
-
Jacobs, R.A.1
-
8
-
-
29344433509
-
Samuel meets Amarel: Automating value function approximation using global state space analysis
-
Mahadevan, S. (2005). Samuel meets Amarel: Automating value function approximation using global state space analysis. In Proceedings of AAAI.
-
(2005)
Proceedings of AAAI
-
-
Mahadevan, S.1
-
9
-
-
17444414191
-
Basis function adaptation in temporal difference reinforcement learning
-
Mannor, S., Menache, I., & Shimkin, N. (2005). Basis function adaptation in temporal difference reinforcement learning. Annals of Operations Research, 134, 215-238.
-
(2005)
Annals of Operations Research
, vol.134
, pp. 215-238
-
-
Mannor, S.1
Menache, I.2
Shimkin, N.3
-
10
-
-
0036832953
-
Variable resolution discretization in optimal control
-
Munos, R., & Moore, A. (2002). Variable resolution discretization in optimal control. Machine Learning, 49, 291-323.
-
(2002)
Machine Learning
, vol.49
, pp. 291-323
-
-
Munos, R.1
Moore, A.2
-
11
-
-
26944478343
-
Sparse distributed memories for on-line value-based reinforcement learning
-
Ratitch, B., & Precup, D. (2004). Sparse distributed memories for on-line value-based reinforcement learning. In Proceedings of ECML.
-
(2004)
Proceedings of ECML
-
-
Ratitch, B.1
Precup, D.2
-
13
-
-
33847202724
-
Learning to predict by the methods of temporal differences
-
Sutton, R. (1988). Learning to predict by the methods of temporal differences. Machine Learning, 3, 9-44.
-
(1988)
Machine Learning
, vol.3
, pp. 9-44
-
-
Sutton, R.1
-
15
-
-
0035283402
-
On the convergence of temporal-difference learning with linear function approximation
-
Tadic, V. (2001). On the convergence of temporal-difference learning with linear function approximation. Machine learning, 42, 241-267.
-
(2001)
Machine learning
, vol.42
, pp. 241-267
-
-
Tadic, V.1
-
16
-
-
0031143730
-
An analysis of temporal-difference learning with function approximation
-
Tsitsiklis, J., & Van Roy, B. (1997). An analysis of temporal-difference learning with function approximation. IEEE Transactions on Automatic Control, 42, 674-690.
-
(1997)
IEEE Transactions on Automatic Control
, vol.42
, pp. 674-690
-
-
Tsitsiklis, J.1
Van Roy, B.2
|