-
1
-
-
0034775741
-
Fast solution of the radial basis function interpolation equations: domain decomposition methods
-
Beatson R.K., Light W.A., and Billings S. Fast solution of the radial basis function interpolation equations: domain decomposition methods. SIAM J. Sci. Comput. 22 5 (2000) 1717-1740
-
(2000)
SIAM J. Sci. Comput.
, vol.22
, Issue.5
, pp. 1717-1740
-
-
Beatson, R.K.1
Light, W.A.2
Billings, S.3
-
2
-
-
17444365418
-
Fast surface reconstruction and hole filling using radial basis functions
-
Casciola G., Lazzaro D., Montefusco L.B., and Morigi S. Fast surface reconstruction and hole filling using radial basis functions. Numer. Algorithms 39 (2005) 289-305
-
(2005)
Numer. Algorithms
, vol.39
, pp. 289-305
-
-
Casciola, G.1
Lazzaro, D.2
Montefusco, L.B.3
Morigi, S.4
-
3
-
-
33745901099
-
Shape preserving surface reconstruction using locally anisotropic RBF interpolants
-
Casciola G., Lazzaro D., Montefusco L.B., and Morigi S. Shape preserving surface reconstruction using locally anisotropic RBF interpolants. Comput. Math. Appl. 51 (2006) 1185-1198
-
(2006)
Comput. Math. Appl.
, vol.51
, pp. 1185-1198
-
-
Casciola, G.1
Lazzaro, D.2
Montefusco, L.B.3
Morigi, S.4
-
4
-
-
0002807993
-
Improved accuracy of multiquadric interpolation using variable shape parameters
-
Kansa E.J., and Carlson R.E. Improved accuracy of multiquadric interpolation using variable shape parameters. Comput. Math. Appl. 24 12 (1992) 99-120
-
(1992)
Comput. Math. Appl.
, vol.24
, Issue.12
, pp. 99-120
-
-
Kansa, E.J.1
Carlson, R.E.2
-
5
-
-
0036502742
-
Radial basis functions for the multivariate interpolation of large scattered data sets
-
Lazzaro D., and Montefusco L.B. Radial basis functions for the multivariate interpolation of large scattered data sets. J. Comput. Appl. Math. 140 (2002) 521-536
-
(2002)
J. Comput. Appl. Math.
, vol.140
, pp. 521-536
-
-
Lazzaro, D.1
Montefusco, L.B.2
-
6
-
-
18144408406
-
Preconditioning for radial basis functions with domain decomposition methods
-
Ling L., and Kansa E.J. Preconditioning for radial basis functions with domain decomposition methods. Math. Comput. Model. 40 13 (2003) 1413-1427
-
(2003)
Math. Comput. Model.
, vol.40
, Issue.13
, pp. 1413-1427
-
-
Ling, L.1
Kansa, E.J.2
-
7
-
-
38249012211
-
Norm estimate for the inverses of a general class of scattered-data radial-function interpolation matrices
-
Narcowich F.J., and Ward J.D. Norm estimate for the inverses of a general class of scattered-data radial-function interpolation matrices. J. Approx. Theory 69 (1992) 84-109
-
(1992)
J. Approx. Theory
, vol.69
, pp. 84-109
-
-
Narcowich, F.J.1
Ward, J.D.2
-
8
-
-
33746131152
-
On condition numbers associated with radial-function interpolation
-
Narcowich F.J., Sivakumar N., and Ward J.D. On condition numbers associated with radial-function interpolation. J. Math. Anal. Appl. 186 (1994) 457-485
-
(1994)
J. Math. Anal. Appl.
, vol.186
, pp. 457-485
-
-
Narcowich, F.J.1
Sivakumar, N.2
Ward, J.D.3
-
9
-
-
0013465435
-
Lower bounds for norms of inverses of interpolation matrices for radial basis functions
-
Schaback R. Lower bounds for norms of inverses of interpolation matrices for radial basis functions. J. Approx. Theory 79 (1994) 287-306
-
(1994)
J. Approx. Theory
, vol.79
, pp. 287-306
-
-
Schaback, R.1
-
10
-
-
51249166702
-
Error estimates and condition numbers for radial basis function interpolation
-
Schaback R. Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3 (1995) 251-264
-
(1995)
Adv. Comput. Math.
, vol.3
, pp. 251-264
-
-
Schaback, R.1
-
11
-
-
50649111533
-
Stability of radial basis function interpolants
-
Chui C.K., et al. (Ed), Vanderbilt Univ. Press, Nashville
-
Schaback R. Stability of radial basis function interpolants. In: Chui C.K., et al. (Ed). Approximation Theory X: Wavelets, Splines, and Applications (2002), Vanderbilt Univ. Press, Nashville 433-440
-
(2002)
Approximation Theory X: Wavelets, Splines, and Applications
, pp. 433-440
-
-
Schaback, R.1
-
12
-
-
0346847275
-
Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
-
Wendland H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4 (1995) 389-396
-
(1995)
Adv. Comput. Math.
, vol.4
, pp. 389-396
-
-
Wendland, H.1
-
13
-
-
0000764217
-
Error estimate for interpolation by compactly supported radial basis functions of minimal degree
-
Wendland H. Error estimate for interpolation by compactly supported radial basis functions of minimal degree. J. Approx. Theory 93 (1998) 258-272
-
(1998)
J. Approx. Theory
, vol.93
, pp. 258-272
-
-
Wendland, H.1
-
14
-
-
34250671769
-
-
H. Wendland, Computational aspects of radial basis function approximation, in: K. Jetter et. al. (Ed.), Topics in Multivariate Approximation and Interpolation, 2005.
-
-
-
-
16
-
-
0000136089
-
Multivariate compactly supported positive definite radial functions
-
Wu Z. Multivariate compactly supported positive definite radial functions. Adv. Comput. Math. 4 (1995) 283-292
-
(1995)
Adv. Comput. Math.
, vol.4
, pp. 283-292
-
-
Wu, Z.1
|