메뉴 건너뛰기




Volumn 22, Issue 6, 2007, Pages 430-437

A nested custering technique for freeway operating condition classification

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; CLUSTER ANALYSIS; DATA MINING; STATISTICAL METHODS; TRAFFIC SURVEYS;

EID: 34250379145     PISSN: 10939687     EISSN: 14678667     Source Type: Journal    
DOI: 10.1111/j.1467-8667.2007.00498.x     Document Type: Article
Times cited : (38)

References (20)
  • 1
    • 1642520991 scopus 로고    scopus 로고
    • Mesoscopic-wavelet freeway work zone flow and congestion feature extraction model
    • Adeli, H. & Ghosh-Dastidar, S. (2004), Mesoscopic-wavelet freeway work zone flow and congestion feature extraction model, Journal of Transportation Engineering, ASCE, 130 (1), 94-103.
    • (2004) Journal of Transportation Engineering, ASCE , vol.130 , Issue.1 , pp. 94-103
    • Adeli, H.1    Ghosh-Dastidar, S.2
  • 2
    • 0034237933 scopus 로고    scopus 로고
    • A probabilistic clustering model for variables of mixed type
    • Bacher, J. (2000), A probabilistic clustering model for variables of mixed type, Quality & Quantity, 34, 223-35.
    • (2000) Quality & Quantity , vol.34 , pp. 223-235
    • Bacher, J.1
  • 7
    • 21644436724 scopus 로고    scopus 로고
    • Real-time freeway level of service using inductive-signature-based vehicle reidentification system
    • Cheol, O., Tok, A. & Ritchie, S. (2005), Real-time freeway level of service using inductive-signature-based vehicle reidentification system, IEEE Transactions on Intelligent Transportation Systems, 6 (2), 138-46.
    • (2005) IEEE Transactions on Intelligent Transportation Systems , vol.6 , Issue.2 , pp. 138-146
    • Cheol, O.1    Tok, A.2    Ritchie, S.3
  • 8
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical variables
    • Huang, Z. (1998), Extensions to the k-means algorithm for clustering large data sets with categorical variables, Data Mining and Knowledge Discovery, 2, 283-304.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 283-304
    • Huang, Z.1
  • 10
    • 34250365166 scopus 로고    scopus 로고
    • UVA-CE-ITS-01-3, University of Virginia, available at last accessed: April 23, 2006
    • Hauser, T., Scherer, W. & Smith, B. (2000), Signal system data mining. UVA-CE-ITS-01-3, University of Virginia, available at http://ntl.bts.gov/lib/23000/23500/23527/ paper-Smith-SignalSystemData.pdf, last accessed: April 23, 2006.
    • (2000) Signal System Data Mining
    • Hauser, T.1    Scherer, W.2    Smith, B.3
  • 11
    • 4243882629 scopus 로고    scopus 로고
    • Experimental properties of complexity in traffic flow
    • Kerner, B. S. & Rehborn, H. (1996), Experimental properties of complexity in traffic flow, Physical Review, E53, R4275-R4278.
    • (1996) Physical Review , vol.E53
    • Kerner, B.S.1    Rehborn, H.2
  • 13
    • 34250310660 scopus 로고    scopus 로고
    • Crash modeling using clustered data from Washington State: Prediction of optimal speed limits, CDROM
    • the Washington, DC
    • Ma, J. & Kockelman, K. (2005), Crash modeling using clustered data from Washington State: Prediction of optimal speed limits, CDROM, the 84th Annual Meeting of the Transportation Research Board, Washington, DC.
    • (2005) 84th Annual Meeting of the Transportation Research Board
    • Ma, J.1    Kockelman, K.2
  • 16
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978), Estimating the dimension of a model, Annals of Statistics, 6, 461-4.
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 17
    • 0037118550 scopus 로고    scopus 로고
    • A fuzzy clustering-based approach to automatic freeway incident detection and characterization
    • Sheu, J. (2002) A fuzzy clustering-based approach to automatic freeway incident detection and characterization, Fuzzy Sets and Systems, 128 (3), 377-88.
    • (2002) Fuzzy Sets and Systems , vol.128 , Issue.3 , pp. 377-388
    • Sheu, J.1
  • 18
    • 34250345457 scopus 로고    scopus 로고
    • accessed February, 2005
    • Weng, F. (1997), Agglomerative Clustering Algorithm, http://www.speech.sri.com/people/stolcke/papers/sri-h4-lm/node7.html, accessed February, 2005.
    • (1997) Agglomerative Clustering Algorithm
    • Weng, F.1
  • 19
    • 0003693581 scopus 로고    scopus 로고
    • TRB (2000), 4th edn., National Research Council, Washington DC
    • TRB (2000), Special Report 209: Highway Capacity Manual, 4th edn., National Research Council, Washington DC.
    • (2000) Special Report 209: Highway Capacity Manual
  • 20
    • 33847144078 scopus 로고    scopus 로고
    • Defining traffic flow phases using ITS-generated data
    • Xia, J. & Chen, M. (2004), Defining traffic flow phases using ITS-generated data, Journal of Intelligent Transportation Systems, 11 (1), 15-24.
    • (2004) Journal of Intelligent Transportation Systems , vol.11 , Issue.1 , pp. 15-24
    • Xia, J.1    Chen, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.