-
1
-
-
0003796630
-
-
Academic Press, New York
-
Adams R. Sobolev Spaces (1975), Academic Press, New York
-
(1975)
Sobolev Spaces
-
-
Adams, R.1
-
2
-
-
0033293882
-
A posteriori finite element error estimation for diffusion problems
-
Adjerid S., Belguendouz B., and Flaherty J.E. A posteriori finite element error estimation for diffusion problems. SIAM J. Sci. Comput. 21 (1999) 728-746
-
(1999)
SIAM J. Sci. Comput.
, vol.21
, pp. 728-746
-
-
Adjerid, S.1
Belguendouz, B.2
Flaherty, J.E.3
-
4
-
-
33745448006
-
The postprocessed mixed finite-element method for the Navier-Stokes equations
-
Ayuso B., García-Archilla B., and Novo J. The postprocessed mixed finite-element method for the Navier-Stokes equations. SIAM J. Numer. Anal. 43 (2005) 1091-1111
-
(2005)
SIAM J. Numer. Anal.
, vol.43
, pp. 1091-1111
-
-
Ayuso, B.1
García-Archilla, B.2
Novo, J.3
-
5
-
-
34250223731
-
The finite element method for parabolic equations I. A posteriori error estimation
-
Bieterman M., and Babuška I. The finite element method for parabolic equations I. A posteriori error estimation. Numer. Math. 40 (1982) 339-371
-
(1982)
Numer. Math.
, vol.40
, pp. 339-371
-
-
Bieterman, M.1
Babuška, I.2
-
6
-
-
34250235371
-
The finite element method for parabolic equations II. A posteriori error estimation and adaptive approach
-
Bieterman M., and Babuška I. The finite element method for parabolic equations II. A posteriori error estimation and adaptive approach. Numer. Math. 40 (1982) 373-406
-
(1982)
Numer. Math.
, vol.40
, pp. 373-406
-
-
Bieterman, M.1
Babuška, I.2
-
7
-
-
38249043795
-
An adaptive method of lines with error control for parabolic equations of the reaction-diffusion type
-
Bieterman M., and Babuška I. An adaptive method of lines with error control for parabolic equations of the reaction-diffusion type. J. Comput. Phys. 63 (1986) 33-66
-
(1986)
J. Comput. Phys.
, vol.63
, pp. 33-66
-
-
Bieterman, M.1
Babuška, I.2
-
8
-
-
0035827103
-
A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations
-
Babuška I., and Ohnimus S. A posteriori error estimation for the semidiscrete finite element method of parabolic differential equations. Comput. Methods Appl. Mech. Engrg. 190 (2001) 4691-4712
-
(2001)
Comput. Methods Appl. Mech. Engrg.
, vol.190
, pp. 4691-4712
-
-
Babuška, I.1
Ohnimus, S.2
-
9
-
-
0035630248
-
On one approach to a posteriori error estimates for evolution problems solved by the method of lines
-
Babuška I., Feistauer M., and Šolín P. On one approach to a posteriori error estimates for evolution problems solved by the method of lines. Numer. Math. 89 (2001) 225-256
-
(2001)
Numer. Math.
, vol.89
, pp. 225-256
-
-
Babuška, I.1
Feistauer, M.2
Šolín, P.3
-
10
-
-
21644485033
-
A posteriori analysis of the finite element discretization of some parabolic equations
-
Bergam A., Bernardi C., and Mghazli Z. A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. 74 (2005) 1117-1138
-
(2005)
Math. Comput.
, vol.74
, pp. 1117-1138
-
-
Bergam, A.1
Bernardi, C.2
Mghazli, Z.3
-
12
-
-
0034190401
-
A postprocess based improvement of the spectral element method
-
de Frutos J., and Novo J. A postprocess based improvement of the spectral element method. Appl. Numer. Math. 33 (2000) 217-223
-
(2000)
Appl. Numer. Math.
, vol.33
, pp. 217-223
-
-
de Frutos, J.1
Novo, J.2
-
13
-
-
0034436855
-
A apectral element method for the Navier-Stokes equations with improved accuracy
-
de Frutos J., and Novo J. A apectral element method for the Navier-Stokes equations with improved accuracy. SIAM J. Numer. Anal. 38 (2000) 799-819
-
(2000)
SIAM J. Numer. Anal.
, vol.38
, pp. 799-819
-
-
de Frutos, J.1
Novo, J.2
-
14
-
-
0038042429
-
Postprocessing the linear finite element method
-
de Frutos J., and Novo J. Postprocessing the linear finite element method. SIAM. J. Numer. Anal. 40 (2002) 805-819
-
(2002)
SIAM. J. Numer. Anal.
, vol.40
, pp. 805-819
-
-
de Frutos, J.1
Novo, J.2
-
15
-
-
0037184250
-
A posteriori error estimation with the p version of the finite element method for nonlinear parabolic differential equations
-
de Frutos J., and Novo J. A posteriori error estimation with the p version of the finite element method for nonlinear parabolic differential equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4893-4904
-
(2002)
Comput. Methods Appl. Mech. Engrg.
, vol.191
, pp. 4893-4904
-
-
de Frutos, J.1
Novo, J.2
-
16
-
-
21344439543
-
Element-wise a posteriori estimates based on hierarchical bases for nonlinear parabolic problems
-
de Frutos J., and Novo J. Element-wise a posteriori estimates based on hierarchical bases for nonlinear parabolic problems. Int. J. Numer. Methods Engrg. 63 (2005) 1146-1173
-
(2005)
Int. J. Numer. Methods Engrg.
, vol.63
, pp. 1146-1173
-
-
de Frutos, J.1
Novo, J.2
-
17
-
-
0001324638
-
Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds
-
García-Archilla B., Novo J., and Titi E.S. Postprocessing the Galerkin method: a novel approach to approximate inertial manifolds. SIAM J. Numer. Anal. 35 (1998) 941-972
-
(1998)
SIAM J. Numer. Anal.
, vol.35
, pp. 941-972
-
-
García-Archilla, B.1
Novo, J.2
Titi, E.S.3
-
18
-
-
0038855060
-
An approximate inertial manifold approach to postprocessing Galerkin methods for the Navier-Stokes equations
-
García-Archilla B., Novo J., and Titi E.S. An approximate inertial manifold approach to postprocessing Galerkin methods for the Navier-Stokes equations. Math. Comput. 68 (1999) 893-911
-
(1999)
Math. Comput.
, vol.68
, pp. 893-911
-
-
García-Archilla, B.1
Novo, J.2
Titi, E.S.3
-
19
-
-
0000051734
-
Postprocessing the Galerkin method: the finite element case
-
García-Archilla B., and Titi E.S. Postprocessing the Galerkin method: the finite element case. SIAM. J. Numer. Anal. 37 (2000) 470-499
-
(2000)
SIAM. J. Numer. Anal.
, vol.37
, pp. 470-499
-
-
García-Archilla, B.1
Titi, E.S.2
-
20
-
-
0000966077
-
Finite-element approximation of the nonstationary Navier-Stokes problem. Part I: Regularity of solutions and second-order error estimates for spatial discretization
-
Heywood J.G., and Rannacher R. Finite-element approximation of the nonstationary Navier-Stokes problem. Part I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275-311
-
(1982)
SIAM J. Numer. Anal.
, vol.19
, pp. 275-311
-
-
Heywood, J.G.1
Rannacher, R.2
-
21
-
-
0025416424
-
Finite-element approximation of the nonstationary Navier-Stokes Problem. Part IV: Error analysis of second order time discretization
-
Heywood J.G., and Rannacher R. Finite-element approximation of the nonstationary Navier-Stokes Problem. Part IV: Error analysis of second order time discretization. SIAM J. Numer. Anal. 37 (1990) 353-384
-
(1990)
SIAM J. Numer. Anal.
, vol.37
, pp. 353-384
-
-
Heywood, J.G.1
Rannacher, R.2
-
22
-
-
33750850308
-
Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems
-
Lakkis O., and Makridakis C. Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75 (2006) 1627-1658
-
(2006)
Math. Comput.
, vol.75
, pp. 1627-1658
-
-
Lakkis, O.1
Makridakis, C.2
-
23
-
-
0030288775
-
Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations: nonsmooth-data error estimates and applications to long-time behaviour
-
Lubich C., and Ostermann A. Runge-Kutta time discretization of reaction-diffusion and Navier-Stokes equations: nonsmooth-data error estimates and applications to long-time behaviour. Appl. Numer. Math. 22 (1996) 279-292
-
(1996)
Appl. Numer. Math.
, vol.22
, pp. 279-292
-
-
Lubich, C.1
Ostermann, A.2
-
24
-
-
1342297216
-
Elliptic reconstruction and a posteriori error estimates for parabolic problems
-
Makridakis C., and Nochetto R.H. Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41 (2003) 1585-1594
-
(2003)
SIAM J. Numer. Anal.
, vol.41
, pp. 1585-1594
-
-
Makridakis, C.1
Nochetto, R.H.2
-
25
-
-
0028374973
-
A posteriori error estimation with finite element semi and fully discrete methods for nonlinear parabolic equations in one space dimension
-
Moore P. A posteriori error estimation with finite element semi and fully discrete methods for nonlinear parabolic equations in one space dimension. SIAM J. Numer. Anal. 31 (1994) 149-169
-
(1994)
SIAM J. Numer. Anal.
, vol.31
, pp. 149-169
-
-
Moore, P.1
-
26
-
-
0242500938
-
Guaranteed a posteriori error estimation for fully discrete solutions of parabolic problems
-
Strouboulis T., Babuska I., and Datta D.K. Guaranteed a posteriori error estimation for fully discrete solutions of parabolic problems. Int. J. Numer. Methods Engrg. 56 (2003) 1243-1259
-
(2003)
Int. J. Numer. Methods Engrg.
, vol.56
, pp. 1243-1259
-
-
Strouboulis, T.1
Babuska, I.2
Datta, D.K.3
-
28
-
-
34250324786
-
Postprocessing the finite element method for semilinear parabolic problems
-
Yan Y. Postprocessing the finite element method for semilinear parabolic problems. SIAM J. Numer. Anal. 44 (2006) 1681-1702
-
(2006)
SIAM J. Numer. Anal.
, vol.44
, pp. 1681-1702
-
-
Yan, Y.1
|