메뉴 건너뛰기




Volumn 5, Issue 1, 2007, Pages 45-52

Generation of Synthetic Transcriptome Data with Defined Statistical Properties for the Development and Testing of New Analysis Methods

Author keywords

distribution modeling; microarray analysis; parameter approximation; signal variance distribution; synthetic data generation; transcriptome

Indexed keywords

TRANSCRIPTOME;

EID: 34250190944     PISSN: 16720229     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1672-0229(07)60013-8     Document Type: Article
Times cited : (2)

References (9)
  • 1
    • 34248664998 scopus 로고    scopus 로고
    • High-sensitivity transcriptome data structure and implications for analysis and biologic interpretation
    • Noth S., et al. High-sensitivity transcriptome data structure and implications for analysis and biologic interpretation. Genomics Proteomics Bioinfor-matics 4 (2006) 212-229
    • (2006) Genomics Proteomics Bioinfor-matics , vol.4 , pp. 212-229
    • Noth, S.1
  • 2
    • 33645285263 scopus 로고    scopus 로고
    • Chromatin code, local non-equilibrium dynamics, and the emergence of transcription regulatory programs
    • Benecke A. Chromatin code, local non-equilibrium dynamics, and the emergence of transcription regulatory programs. Eur. Phys. J. E (Soft Matter) 19 (2006) 353-366
    • (2006) Eur. Phys. J. E (Soft Matter) , vol.19 , pp. 353-366
    • Benecke, A.1
  • 3
    • 19544379881 scopus 로고    scopus 로고
    • Stochasticity in gene expression: from theories to phenotypes
    • Kaern M., et al. Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet. 6 (2005) 451-464
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 451-464
    • Kaern, M.1
  • 4
    • 12144261863 scopus 로고    scopus 로고
    • Self-organization vs Watchmaker: stochastic gene expression and cell differentiation
    • Kurakin A. Self-organization vs Watchmaker: stochastic gene expression and cell differentiation. Dev. Genes Evol. 215 (2005) 46-52
    • (2005) Dev. Genes Evol. , vol.215 , pp. 46-52
    • Kurakin, A.1
  • 5
    • 2942542735 scopus 로고    scopus 로고
    • Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment
    • Konishi T. Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment. BMC Bioinformatics 5 (2004) 5
    • (2004) BMC Bioinformatics , vol.5 , pp. 5
    • Konishi, T.1
  • 6
    • 25444500666 scopus 로고    scopus 로고
    • Normal uniform mixture differential gene expression detection for cDNA microarrays
    • Dean N., and Raftery A.E. Normal uniform mixture differential gene expression detection for cDNA microarrays. BMC Bioinformatics 6 (2005) 173
    • (2005) BMC Bioinformatics , vol.6 , pp. 173
    • Dean, N.1    Raftery, A.E.2
  • 7
    • 33747330684 scopus 로고    scopus 로고
    • Normalization using weighted negative second order exponential error functions (NeONORM) provides robustness against asymmetries in comparative transcriptome profiles and avoids false calls
    • Noth S., et al. Normalization using weighted negative second order exponential error functions (NeONORM) provides robustness against asymmetries in comparative transcriptome profiles and avoids false calls. Genomics Proteomics Bioinformatics 4 (2006) 90-109
    • (2006) Genomics Proteomics Bioinformatics , vol.4 , pp. 90-109
    • Noth, S.1
  • 8
    • 34250220750 scopus 로고    scopus 로고
    • Bilmes J.A., 1998. A gentle tutorial of the EM algorithm and its appliaction to parameter estimation for Gaussian mixture and hidden Markov models. Technical report, ICSI TR-97-021, University of California at Berkley, USA.
  • 9
    • 34250218653 scopus 로고    scopus 로고
    • Shewchuk, J.R,. 1994. An introduction to the conjugate gradient method without the agonizing pain. Technical report, CS-94-125, Carnegie Mellon University, Pittsburgh, USA.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.