메뉴 건너뛰기




Volumn 183, Issue 2, 2007, Pages 767-784

MEPAR-miner: Multi-expression programming for classification rule mining

Author keywords

Classification rules; Data mining; Evolutionary programming; Multi expression programming

Indexed keywords

CLASSIFICATION (OF INFORMATION); EVOLUTIONARY ALGORITHMS; GENE ENCODING; KNOWLEDGE ACQUISITION; PROBLEM SOLVING;

EID: 34250010259     PISSN: 03772217     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ejor.2006.10.015     Document Type: Article
Times cited : (39)

References (44)
  • 2
    • 34249989501 scopus 로고    scopus 로고
    • Baykasoǧlu, A., Özbakir, L., 2005. A new multiple expression programming based approach to discover classification rules for data mining applications. In: CIE35 35th International Conference on Computers & Industrial Engineering, 19-22 June 2005, Istanbul, pp. 257-262.
  • 4
    • 0347479357 scopus 로고    scopus 로고
    • A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets
    • Bojarczuk C.C., Lopes H.S., Freitas A.A., and Michalkiewicz E.L. A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets. Artificial Intelligence in Medicine 30 (2004) 27-48
    • (2004) Artificial Intelligence in Medicine , vol.30 , pp. 27-48
    • Bojarczuk, C.C.1    Lopes, H.S.2    Freitas, A.A.3    Michalkiewicz, E.L.4
  • 5
    • 0035247432 scopus 로고    scopus 로고
    • A comparison of linear genetic programming and neural networks in medical data mining
    • Brameier M., and Banzhaf W. A comparison of linear genetic programming and neural networks in medical data mining. IEEE Transactions on Evolutionary Computation 5 1 (2001) 17-26
    • (2001) IEEE Transactions on Evolutionary Computation , vol.5 , Issue.1 , pp. 17-26
    • Brameier, M.1    Banzhaf, W.2
  • 6
    • 2442702710 scopus 로고    scopus 로고
    • A genetic algorithm with sequential niching for discovering small-disjunct rules
    • Langdon W.B., et al. (Ed), Morgan Kaufmann, New York, San Francisco, USA
    • Carvalho D.R., and Freitas A.A. A genetic algorithm with sequential niching for discovering small-disjunct rules. In: Langdon W.B., et al. (Ed). Proceedings Genetic and Evolutionary Computation Conference (GECCO-2002) (2002), Morgan Kaufmann, New York, San Francisco, USA 1035-1042
    • (2002) Proceedings Genetic and Evolutionary Computation Conference (GECCO-2002) , pp. 1035-1042
    • Carvalho, D.R.1    Freitas, A.A.2
  • 9
    • 0036079474 scopus 로고    scopus 로고
    • Discovering interesting classification rules with genetic programming
    • De Falco I., Cioppa A.D., and Tarantino E. Discovering interesting classification rules with genetic programming. Applied Soft Computing 1 (2002) 257-269
    • (2002) Applied Soft Computing , vol.1 , pp. 257-269
    • De Falco, I.1    Cioppa, A.D.2    Tarantino, E.3
  • 10
    • 34249990179 scopus 로고    scopus 로고
    • Fayyad, U., Irani, K.B., 1993. Multi-interval discretization of continuous-valued attributes for classification learning. In: Proceedings of 13th International Joint Conference on Artificial Intelligence, pp. 1022-1027.
  • 11
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: A new adaptive algorithm for solving problems
    • Ferreira C. Gene expression programming: A new adaptive algorithm for solving problems. Complex Systems 13 2 (2001) 87-129
    • (2001) Complex Systems , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 12
    • 0033671768 scopus 로고    scopus 로고
    • Fidelis, M.V., Lopes, H.S., Freitas, A.A., 2000. Discovering comprehensible classification rules with a genetic algorithm. In: Proceedings Congress on Evolutionary Computation (CEC-2000). La Jolla, CA, USA, pp. 805-810.
  • 14
    • 0002344899 scopus 로고    scopus 로고
    • A genetic programming framework for two data mining tasks: classification and generalized rule induction
    • Morgan Kaufmann, Stanford University
    • Freitas A.A. A genetic programming framework for two data mining tasks: classification and generalized rule induction. Proceedings of the 2nd Annual Conference, Genetic Programming 1997 (1997), Morgan Kaufmann, Stanford University 96-101
    • (1997) Proceedings of the 2nd Annual Conference, Genetic Programming 1997 , pp. 96-101
    • Freitas, A.A.1
  • 15
    • 0012141368 scopus 로고    scopus 로고
    • A survey of evolutionary algorithms for data mining and knowledge discovery
    • Ghosh A., and Tsutsui S. (Eds), Springer, Berlin
    • Freitas A.A. A survey of evolutionary algorithms for data mining and knowledge discovery. In: Ghosh A., and Tsutsui S. (Eds). Advances in Evolutionary Computation (2002), Springer, Berlin
    • (2002) Advances in Evolutionary Computation
    • Freitas, A.A.1
  • 16
    • 0037004445 scopus 로고    scopus 로고
    • Artificial immune system classification of multiple-class problems
    • Dagli C.H., Buczak A.L., Ghosh J., Embrechts M.J., Ersoy O., and Kercel S.W. (Eds), ASME Press, New York
    • Goodman D., Boggess L., and Watkins A. Artificial immune system classification of multiple-class problems. In: Dagli C.H., Buczak A.L., Ghosh J., Embrechts M.J., Ersoy O., and Kercel S.W. (Eds). Intelligent Engineering Systems Through Artificial Neural Networks 12 (2002), ASME Press, New York 179-184
    • (2002) Intelligent Engineering Systems Through Artificial Neural Networks , vol.12 , pp. 179-184
    • Goodman, D.1    Boggess, L.2    Watkins, A.3
  • 17
    • 33845318124 scopus 로고    scopus 로고
    • Hassan, Y., and Tazaki, E., 2001. Rule extraction based on rough set theory combined with genetic programming and its application to medical data analysis. In: Seventh Australian and New Zeland Intelligent Information Systems Conference. Perth, Western Australia, pp. 18-21.
  • 19
    • 84948977233 scopus 로고
    • The Power of decision tables
    • Machine Learning: Proceedings of the Eighth European Conference on Machine Learning ECML95. Lavrac N., and Wrobel S. (Eds), Springer-Verlag
    • Kohavi R. The Power of decision tables. In: Lavrac N., and Wrobel S. (Eds). Machine Learning: Proceedings of the Eighth European Conference on Machine Learning ECML95. Lecture Notes in Artificial Intelligence vol. 914 (1995), Springer-Verlag 174-189
    • (1995) Lecture Notes in Artificial Intelligence , vol.914 , pp. 174-189
    • Kohavi, R.1
  • 21
    • 14644405021 scopus 로고    scopus 로고
    • Predicting survival time for kidney dialysis patients: a data mining approach
    • Kusiak A., Dixon B., and Shah S. Predicting survival time for kidney dialysis patients: a data mining approach. Computers in Biology and Medicine 35 4 (2005) 311-327
    • (2005) Computers in Biology and Medicine , vol.35 , Issue.4 , pp. 311-327
    • Kusiak, A.1    Dixon, B.2    Shah, S.3
  • 23
    • 0032895111 scopus 로고    scopus 로고
    • Selected techniques for data mining in medicine
    • Lavrac N. Selected techniques for data mining in medicine. Artificial Intelligence in Medicine 16 (1999) 3-23
    • (1999) Artificial Intelligence in Medicine , vol.16 , pp. 3-23
    • Lavrac, N.1
  • 24
    • 2042476687 scopus 로고    scopus 로고
    • Mining classification rules using rough sets and neural networks
    • Li R., and Wang Z.-O. Mining classification rules using rough sets and neural networks. European Journal of Operational Research 157 (2004) 439-448
    • (2004) European Journal of Operational Research , vol.157 , pp. 439-448
    • Li, R.1    Wang, Z.-O.2
  • 25
    • 3242741898 scopus 로고    scopus 로고
    • Polynomial-fuzzy decision tree structures for classifying medical data
    • Mugambi E.M., Hunter A., Oatley G., and Kennedy L. Polynomial-fuzzy decision tree structures for classifying medical data. Knowledge-Based Systems 17 (2004) 81-87
    • (2004) Knowledge-Based Systems , vol.17 , pp. 81-87
    • Mugambi, E.M.1    Hunter, A.2    Oatley, G.3    Kennedy, L.4
  • 27
    • 34250002888 scopus 로고    scopus 로고
    • Oltean, M., Dumitrescu, D., 2002. Multi expression programming, technical report, UBB-01-2002, Babeş-Bolyai University, Cluj-Napoca, Romania. Available from: .
  • 28
    • 7444241025 scopus 로고    scopus 로고
    • Evolving evolutionary algorithms using multi expression programming
    • The 7th European Conference on Artificial Life, September 14-17, 2003, Dortmund. Banzhaf W., et al. (Ed), Springer-Verlag, Berlin
    • Oltean M., and Grosan C. Evolving evolutionary algorithms using multi expression programming. In: Banzhaf W., et al. (Ed). The 7th European Conference on Artificial Life, September 14-17, 2003, Dortmund. LNAI 2801 (2003), Springer-Verlag, Berlin 651-658
    • (2003) LNAI 2801 , pp. 651-658
    • Oltean, M.1    Grosan, C.2
  • 29
    • 11244320455 scopus 로고    scopus 로고
    • Evolving digital circuits using multi expression programming
    • Zebulum R., et al. (Ed), IEEE Press, NJ
    • Oltean M., and Grosan C. Evolving digital circuits using multi expression programming. In: Zebulum R., et al. (Ed). NASA/DoD Conference on Evolvable Hardware, 24-26 June, Seattle (2004), IEEE Press, NJ 87-90
    • (2004) NASA/DoD Conference on Evolvable Hardware, 24-26 June, Seattle , pp. 87-90
    • Oltean, M.1    Grosan, C.2
  • 32
    • 0038232428 scopus 로고    scopus 로고
    • An empirical study of design and testing of hybrid evolutionary-neural approach for classification
    • Pendharkar P.C. An empirical study of design and testing of hybrid evolutionary-neural approach for classification. Omega 29 4 (2001) 361-374
    • (2001) Omega , vol.29 , Issue.4 , pp. 361-374
    • Pendharkar, P.C.1
  • 35
    • 84952764091 scopus 로고    scopus 로고
    • Santos, R., Nievola, J.C., Freitas, A.A., 2000. Extracting comprehensible rules from neural networks via genetic algorithms. In: Proceedings of the IEEE Symposium on Combinations of Evolutionary Computation and Neural Networks (ECNN-2000). San Antonio, TX, USA, pp. 130-139.
  • 36
    • 34250013484 scopus 로고    scopus 로고
    • Takac, A., 2003. Genetic programming in data mining: cellular approach. MSc Thesis, Institute of Informatics Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava, Slovakia.
  • 37
    • 34250000411 scopus 로고    scopus 로고
    • Tan, A.C., Gilbert, D., 2003. An empirical comparison of supervised machine learning techniques in bioinformatics. In: Proceedings of the First Asia Pacific Bioinformatics Conference (APBC 2003).
  • 38
    • 84901397751 scopus 로고    scopus 로고
    • Tan, K.C., Tay, A., Lee, T.H., Heng, C.M., 2002a. Mining multiple comprehensible classification rules using genetic programming. In: IEEE Congress on Evolutionary Computation. Honolulu, HI, pp. 1302-1307.
  • 39
  • 40
  • 41
    • 33745167714 scopus 로고    scopus 로고
    • A dual-objective evolutionary algorithm for rules extraction in data mining
    • Tan K.C., Yu Q., and Ang J.H. A dual-objective evolutionary algorithm for rules extraction in data mining. Computational Optimization and Applications 34 (2006) 273-294
    • (2006) Computational Optimization and Applications , vol.34 , pp. 273-294
    • Tan, K.C.1    Yu, Q.2    Ang, J.H.3
  • 42
    • 33745097420 scopus 로고    scopus 로고
    • Mining time series data for segmentation by using ant colony optimization
    • Weng S.-S., and Liu Y.-H. Mining time series data for segmentation by using ant colony optimization. European Journal of Operational Research 173 (2006) 921-937
    • (2006) European Journal of Operational Research , vol.173 , pp. 921-937
    • Weng, S.-S.1    Liu, Y.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.