메뉴 건너뛰기




Volumn 25, Issue 3, 2007, Pages 209-225

Output value-based initialization for radial basis function neural networks

Author keywords

Centers; Function approximation; Initialization; Neural networks; Radii; RBF; RBFNN

Indexed keywords

APPROXIMATION THEORY; CLUSTERING ALGORITHMS; HEURISTIC METHODS; INITIAL VALUE PROBLEMS; NEURAL NETWORKS; PROBLEM SOLVING;

EID: 34249906433     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-007-9039-8     Document Type: Article
Times cited : (24)

References (39)
  • 1
    • 0033280561 scopus 로고    scopus 로고
    • A survey of fuzzy clustering algorithms for pattern recognition - Part I
    • Baraldi A, Blonda P (1999a) A survey of fuzzy clustering algorithms for pattern recognition - Part I. IEEE Trans Syst Man Cybern 29(6): 786-801
    • (1999) IEEE Trans Syst Man Cybern , vol.29 , Issue.6 , pp. 786-801
    • Baraldi, A.1    Blonda, P.2
  • 2
    • 0033281101 scopus 로고    scopus 로고
    • A survey of fuzzy clustering algorithms for pattern recognition - Part II
    • Baraldi A, Blonda P (1999b) A survey of fuzzy clustering algorithms for pattern recognition - Part II. IEEE Trans Syst Man Cybern 29(6): 786-801
    • (1999) IEEE Trans Syst Man Cybern , vol.29 , Issue.6 , pp. 786-801
    • Baraldi, A.1    Blonda, P.2
  • 3
    • 0345328110 scopus 로고    scopus 로고
    • On the kernel widths in radial basis function networks
    • Benoudjit N, Verleysen M (2003) On the kernel widths in radial basis function networks. Neural Process Lett 18(2): 139-154
    • (2003) Neural Process Lett , vol.18 , Issue.2 , pp. 139-154
    • Benoudjit, N.1    Verleysen, M.2
  • 5
    • 4544341735 scopus 로고    scopus 로고
    • Introduction of the Radial Basis Function (RBF) networks
    • Bors AG (2001) Introduction of the Radial Basis Function (RBF) networks. OnLine Symp Electron Eng 1: 1-7
    • (2001) OnLine Symp Electron Eng , vol.1 , pp. 1-7
    • Bors, A.G.1
  • 7
    • 0000621802 scopus 로고
    • Multivariate functional interpolation and adaptive networks
    • Broomhead DS, Lowe D (1988) Multivariate functional interpolation and adaptive networks. Complex Syst 2: 321-355
    • (1988) Complex Syst , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 8
    • 0029341753 scopus 로고
    • Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function networks
    • Chen T, Chen H (1995) Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function networks. IEEE Trans Neural Networks 6(4): 904-910
    • (1995) IEEE Trans Neural Networks , vol.6 , Issue.4 , pp. 904-910
    • Chen, T.1    Chen, H.2
  • 9
    • 0026097068 scopus 로고
    • Constrained topological mapping for nonparametric regression analysis
    • Cherkassky V, Lari-Najafi H (1991) Constrained topological mapping for nonparametric regression analysis. Neural Networks 4(1): 27-40
    • (1991) Neural Networks , vol.4 , Issue.1 , pp. 27-40
    • Cherkassky, V.1    Lari-Najafi, H.2
  • 10
    • 0030196823 scopus 로고    scopus 로고
    • Comparison of adaptative methods for function estimation from samples
    • Cherkassky V, Gehring D, Mulier F (1996) Comparison of adaptative methods for function estimation from samples. IEEE Trans Neural Networks 7: 969-984
    • (1996) IEEE Trans Neural Networks , vol.7 , pp. 969-984
    • Cherkassky, V.1    Gehring, D.2    Mulier, F.3
  • 12
    • 0028465208 scopus 로고
    • Radial basis function neural networks for approximation and estimation of nonlinear stochastic dynamic systems
    • Elanayar S, Shin YC (1994) Radial basis function neural networks for approximation and estimation of nonlinear stochastic dynamic systems. IEEE Trans Neural Networks 5: 594-603
    • (1994) IEEE Trans Neural Networks , vol.5 , pp. 594-603
    • Elanayar, S.1    Shin, Y.C.2
  • 13
    • 84950941772 scopus 로고
    • Projection pursuit regression
    • Friedman J (1981) Projection pursuit regression. J Am Statist Assoc 76: 817-823
    • (1981) J Am Statist Assoc , vol.76 , pp. 817-823
    • Friedman, J.1
  • 14
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines (with discussion)
    • Friedman JH (1991) Multivariate adaptive regression splines (with discussion). Ann Stat 19: 1-141
    • (1991) Ann Stat , vol.19 , pp. 1-141
    • Friedman, J.H.1
  • 15
    • 0018491303 scopus 로고
    • Asymptotically optimal block quantization
    • Gersho A (1979) Asymptotically optimal block quantization. IEEE Trans Inform Theory 25(4): 373-380
    • (1979) IEEE Trans Inform Theory , vol.25 , Issue.4 , pp. 373-380
    • Gersho, A.1
  • 17
    • 0742321288 scopus 로고    scopus 로고
    • Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation
    • González J, Rojas I, Ortega J, Pomares H, Fernández F, Díaz A (2003) Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation. IEEE Trans Neural Networks 14(6): 1478-1495
    • (2003) IEEE Trans Neural Networks , vol.14 , Issue.6 , pp. 1478-1495
    • González, J.1    Rojas, I.2    Ortega, J.3    Pomares, H.4    Fernández, F.5    Díaz, A.6
  • 19
    • 85015336272 scopus 로고    scopus 로고
    • RBF centers initialization using fuzzy clustering technique for function approximation problems
    • Guillén A, Rojas I, Gonzalez J, Pomares H, Herrera L J (2005b) RBF centers initialization using fuzzy clustering technique for function approximation problems. Fuzzy Econ Rev 10(2): 27-44
    • (2005) Fuzzy Econ Rev , vol.10 , Issue.2 , pp. 27-44
    • Guillén, A.1    Rojas, I.2    Gonzalez, J.3    Pomares, H.4    Herrera, L.J.5
  • 20
    • 0032690356 scopus 로고    scopus 로고
    • Reformulated radial basis neural networks trained by gradient descent
    • Karayiannis NB (1999) Reformulated radial basis neural networks trained by gradient descent. IEEE Trans Neural Networks 10(3):657-671
    • (1999) IEEE Trans Neural Networks , vol.10 , Issue.3 , pp. 657-671
    • Karayiannis, N.B.1
  • 21
    • 0031270611 scopus 로고    scopus 로고
    • Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques
    • Karayiannis NB, Mi GW (1997) Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques. IEEE Trans Neural Networks 8: 1492-1506
    • (1997) IEEE Trans Neural Networks , vol.8 , pp. 1492-1506
    • Karayiannis, N.B.1    Mi, G.W.2
  • 23
    • 0346076777 scopus 로고    scopus 로고
    • Generalized weighted conditional fuzzy clustering
    • Leski JM (2003) Generalized weighted conditional fuzzy clustering. IEEE Trans Fuzzy Syst 11(6): 709-715
    • (2003) IEEE Trans Fuzzy Syst , vol.11 , Issue.6 , pp. 709-715
    • Leski, J.M.1
  • 24
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tunned processing units
    • Moody J, Darken C (1989) Fast learning in networks of locally-tunned processing units. Neural Comput 1(2): 281-294
    • (1989) Neural Comput , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.2
  • 26
    • 0000106040 scopus 로고
    • Universal approximation using radial basis functions network
    • Park J, Sandberg JW (1991) Universal approximation using radial basis functions network. Neural Comput 3: 246-257
    • (1991) Neural Comput , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, J.W.2
  • 27
    • 0001002401 scopus 로고
    • Approximation and radial basis function networks
    • Park J, Sandberg I (1993) Approximation and radial basis function networks. Neural Comput 5: 305-316
    • (1993) Neural Comput , vol.5 , pp. 305-316
    • Park, J.1    Sandberg, I.2
  • 28
    • 0034815902 scopus 로고    scopus 로고
    • The enhanced-LBG algorithm
    • Patanè G, Russo M (2001) The enhanced-LBG algorithm. Neural Networks 14(9): 1219-1237
    • (2001) Neural Networks , vol.14 , Issue.9 , pp. 1219-1237
    • Patanè, G.1    Russo, M.2
  • 29
    • 0032122726 scopus 로고    scopus 로고
    • Conditional fuzzy clustering in the design of radial basis function neural networks
    • Pedrycz W (1998) Conditional fuzzy clustering in the design of radial basis function neural networks. IEEE Trans Neural Networks 9(4): 601-612
    • (1998) IEEE Trans Neural Networks , vol.9 , Issue.4 , pp. 601-612
    • Pedrycz, W.1
  • 30
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio T, Girosi F (1990) Networks for approximation and learning. In: Proceedings of the IEEE, vol 78, pp 1481-1497
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 33
    • 0001520365 scopus 로고    scopus 로고
    • Analysis of the operators involved in the definition of the implication functions and in the fuzzy inference proccess
    • Rojas I, Anguita M, Prieto A, Valenzuela O (1998) Analysis of the operators involved in the definition of the implication functions and in the fuzzy inference proccess. Int J Approx Reason 19: 367-389
    • (1998) Int J Approx Reason , vol.19 , pp. 367-389
    • Rojas, I.1    Anguita, M.2    Prieto, A.3    Valenzuela, O.4
  • 34
    • 0032595185 scopus 로고    scopus 로고
    • Alternating cluster estimation: A new tool for clustering and function approximation
    • Runkler TA, Bezdek JC (1999) Alternating cluster estimation: a new tool for clustering and function approximation. IEEE Trans Fuzzy Syst 7(4): 377-393
    • (1999) IEEE Trans Fuzzy Syst , vol.7 , Issue.4 , pp. 377-393
    • Runkler, T.A.1    Bezdek, J.C.2
  • 35
    • 0035117089 scopus 로고    scopus 로고
    • Approximation of nonlinear systems with radial basis function neural networks
    • Schilling RJ, Carroll JJ, Al-Ajlouni AF (2001) Approximation of nonlinear systems with radial basis function neural networks. IEEE Trans Neural Networks 12(1): 1-15
    • (2001) IEEE Trans Neural Networks , vol.12 , Issue.1 , pp. 1-15
    • Schilling, R.J.1    Carroll, J.J.2    Al-Ajlouni, A.F.3
  • 36
    • 0033100650 scopus 로고    scopus 로고
    • Image interpolation for progressive transmission by using radial basis function networks
    • Sigitani T, Iiguni Y, Maeda H (1999) Image interpolation for progressive transmission by using radial basis function networks. IEEE Trans Neural Networks 10(2): 381-389
    • (1999) IEEE Trans Neural Networks , vol.10 , Issue.2 , pp. 381-389
    • Sigitani, T.1    Iiguni, Y.2    Maeda, H.3
  • 37
    • 0034227542 scopus 로고    scopus 로고
    • Analysis of input-output clustering for determining centers of RBFN
    • Uykan Z, Gzelis C. Celebei ME, Koivo HN (2000) Analysis of input-output clustering for determining centers of RBFN. IEEE Trans Neural Networks 11 (4): 851-858
    • (2000) IEEE Trans Neural Networks , vol.11 , Issue.4 , pp. 851-858
    • Uykan, Z.1    Gzelis, C.2    Celebei, M.E.3    Koivo, H.N.4
  • 38
    • 1942532748 scopus 로고    scopus 로고
    • Improved possibilistic C-means clustering algorithms
    • Zhang J, Leung Y (2004) Improved possibilistic C-means clustering algorithms. IEEE Trans Fuzzy Syst 12: 209-217
    • (2004) IEEE Trans Fuzzy Syst , vol.12 , pp. 209-217
    • Zhang, J.1    Leung, Y.2
  • 39
    • 0032961082 scopus 로고    scopus 로고
    • A global learning algorithm for a RBF network
    • Zhu Q, Cai Y, Liu L (1999) A global learning algorithm for a RBF network. Neural Networks 12: 527-540
    • (1999) Neural Networks , vol.12 , pp. 527-540
    • Zhu, Q.1    Cai, Y.2    Liu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.