메뉴 건너뛰기




Volumn 9, Issue 4, 1992, Pages 309-347

A Bayesian Method for the Induction of Probabilistic Networks from Data

Author keywords

Bayesian belief networks; induction; machine learning; probabilistic networks

Indexed keywords


EID: 34249832377     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1023/A:1022649401552     Document Type: Article
Times cited : (3246)

References (71)
  • 3
    • 84951539242 scopus 로고    scopus 로고
    • Beinlich, I.A., Suermondt, H.J., Chavez, R.M., & Cooper, G.F. (1989). The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. Proceedings of the Second European Conference on Artificial Intelligence in Medicine (pp. 247–256). London, England.
  • 7
    • 84951539243 scopus 로고    scopus 로고
    • Buntine, W.L. (1990b). A theory of learning classification rules. Doctoral dissertation, School of Computing Science, University of Technology, Sydney, Australia.
  • 8
    • 85025876351 scopus 로고    scopus 로고
    • Carbonell, J.G. (Ed.) (1990). Special volume on machine learning. Artificial Intelligence, 40, 1–385.
  • 13
    • 84951539245 scopus 로고    scopus 로고
    • Cooper, G.F. (1984). NESTOR: A computer-based medical diagnostic aid that integrates causal and probabilistic knowledge. Doctoral dissertation, Medical Information Sciences, Stanford University, Stanford, CA.
  • 16
    • 84951539246 scopus 로고    scopus 로고
    • Crawford, S.L. & Fung,.M. (1991). An analysis of two probabilistic model induction techniques. Proceedings of the Third International Workshop on AI and Statistics (in press).
  • 18
    • 85025867405 scopus 로고    scopus 로고
    • Fung, R. & Shachter, R.D. (1991). Contingent influence diagrams (Research report 90-10). Mountain View, CA: Advanced Decision Systems.
  • 20
    • 84951539248 scopus 로고    scopus 로고
    • Fung, R.M., Crawford, S.L., Appelbaum, L.A., & Tong, R.M. (1990b). An architecture for probabilistic concept-based information retrieval. Proceedings of the Conference on Uncertainty in Artificial Intelligence (pp. 392–404). Cambridge, MA.
  • 26
    • 84951539249 scopus 로고    scopus 로고
    • Golmard, J.L., & Mallet, A. (1989). Learning probabilities in causal trees from incomplete databases. Proceedings of the IJCAI Workshop on Knowledge Discovery in Databases (pp.117–126). Detroit, MI.
  • 32
    • 84951539250 scopus 로고    scopus 로고
    • Herskovits, E.H. (1991). Computer-based probabilistic network construction. Doctoral dissertation, Medical Infortation Sciences, Stanford University, Stanford, CA.
  • 33
    • 84951539251 scopus 로고    scopus 로고
    • Herskovits, E.H. & Cooper, G.F. (1990). Kutato: An entropy-driven system for the construction of probabilistic expert systems from databases. Proceedings of the Conference on Uncertainty in Artificial Intelligence (pp.54–62). Cambridge, MA.
  • 43
    • 84951539252 scopus 로고    scopus 로고
    • Lauritzen, S.L. & Spiegelhalter, D.J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society (Series B), 50, 157–224.
  • 44
    • 84951539253 scopus 로고    scopus 로고
    • Liu, L., Wilkins, D.C., Ying, X., & Bian, Z. (1990). Minimum error tree decomposition. Proceedings of the Conference on Uncertainty in Artificial Intelligence (pp. 180–185). Cambridge, MA.
  • 54
    • 84951539254 scopus 로고    scopus 로고
    • Rebane, G. & Pearl, J. (1987). The recovery of causal poly-trees from statistical data. Proceedings of the Workshop on Uncertainty in Artificial Intelligence (pp. 222–228). Seattle, Washington.
  • 66
    • 85025860667 scopus 로고    scopus 로고
    • Srinivas, S., Russell, S., & Agogino, A. (190). Automated construction of sparse Bayesian networks for unstructured probabilistic models and domain information. In M. Henrion, R.D. Shachter, L.N. Kanal, & J.F. Lemmer (Eds.), Uncertainty in artificial intelligence 5. Amsterdam: North-Holland.
  • 69
    • 84951539257 scopus 로고    scopus 로고
    • Verma, T.S. & Pearl, J. (1990). Equivalence and synthesis of causal models. Proceedings of the Conference on Uncertainty in Artificial Intelligence (pp. 220–227). Cambridge, MA.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.