-
1
-
-
34249668701
-
-
Hex information, V. V. Anshelevich, ed, available at
-
Hex information, V. V. Anshelevich, ed., available at http://www.cs.unimaas.nl/icga/games/hex/.
-
-
-
-
2
-
-
85158171964
-
The game of Hex: An automatic theorem proving approach to game programming
-
available at
-
V. V. Anshelevich, The game of Hex: An automatic theorem proving approach to game programming, in Proceedings of the Seventeenth National Conference on Artificial Intelligence (2000), pp. 189-194; available at http://home.earthlink.net/~vanshel/VAnshelevich-01.pdf.
-
(2000)
Proceedings of the Seventeenth National Conference on Artificial Intelligence
, pp. 189-194
-
-
Anshelevich, V.V.1
-
4
-
-
0000898051
-
Critical percolation in finite geometries
-
J. L. Cardy, Critical percolation in finite geometries, J. Phys. A 25 (1992) L201-L206.
-
(1992)
J. Phys. A
, vol.25
-
-
Cardy, J.L.1
-
5
-
-
0001285996
-
Fractal structure of Ising and Potts clusters: Exact results
-
A. Coniglio. Fractal structure of Ising and Potts clusters: Exact results, Phys. Rev. Lett. 62 (1989) 3054-3057.
-
(1989)
Phys. Rev. Lett
, vol.62
, pp. 3054-3057
-
-
Coniglio, A.1
-
7
-
-
22944437300
-
The game of Hex
-
Simon and Schuster, New York, pp
-
M. Gardner, The game of Hex, in Hexaflexagons and Other Mathematical Diversions: The First Scientific American Book of Puzzles and Games, 1959, Simon and Schuster, New York, pp. 73-83.
-
(1959)
Hexaflexagons and Other Mathematical Diversions: The First Scientific American Book of Puzzles and Games
, pp. 73-83
-
-
Gardner, M.1
-
8
-
-
0033520177
-
Pair connectedness and shortest-path scaling in critical percolation
-
P. Grassberger, Pair connectedness and shortest-path scaling in critical percolation, J. Phys. A 32 (1999) 6233-6238.
-
(1999)
J. Phys. A
, vol.32
, pp. 6233-6238
-
-
Grassberger, P.1
-
9
-
-
0012975254
-
-
H. W. Kuhn and S. Nasar, eds, Princeton University Press, Princeton
-
H. W. Kuhn and S. Nasar, eds., The Essential John Nash, Princeton University Press, Princeton, 2002.
-
(2002)
The Essential John Nash
-
-
-
11
-
-
0346542854
-
Combinatorial games under auction play
-
A. J. Lazarus, D. E. Loeb, J. G. Propp, W. R. Stromquist, and D. H. Ullman, Combinatorial games under auction play, Games Econom. Behav. 27 (1999) 229-264.
-
(1999)
Games Econom. Behav
, vol.27
, pp. 229-264
-
-
Lazarus, A.J.1
Loeb, D.E.2
Propp, J.G.3
Stromquist, W.R.4
Ullman, D.H.5
-
12
-
-
0001530822
-
A solution of the Shannon switching game
-
A. Lehman, A solution of the Shannon switching game, J. Soc. Indust. Appl. Math. 12 (1964) 687-725.
-
(1964)
J. Soc. Indust. Appl. Math
, vol.12
, pp. 687-725
-
-
Lehman, A.1
-
14
-
-
33748634338
-
-
R. O'Donnell, M. Saks, O. Schramm, and R. Servedio, Every decision tree has an influential variable, in Proceedings of the 46th Annual Symposium on Foundations of Computer Science (FOCS), 2005, pp. 31-39; available at arXiv:cs.CC/0508071.
-
R. O'Donnell, M. Saks, O. Schramm, and R. Servedio, Every decision tree has an influential variable, in Proceedings of the 46th Annual Symposium on Foundations of Computer Science (FOCS), 2005, pp. 31-39; available at arXiv:cs.CC/0508071.
-
-
-
-
15
-
-
30744434209
-
On decision trees, influences, and learning monotone decision trees
-
Technical report CUCS-023-04, Department of Computer Science, Columbia University
-
R. O'Donnell and R. Servedio, On decision trees, influences, and learning monotone decision trees, Technical report CUCS-023-04, Department of Computer Science, Columbia University, 2004.
-
(2004)
-
-
O'Donnell, R.1
Servedio, R.2
-
16
-
-
34249741386
-
-
Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson, Tug-of-war and the infinity Laplacian (2006, preprint); available at arXiv:math.AP/0605002.
-
Y. Peres, O. Schramm, S. Sheffield, and D. B. Wilson, Tug-of-war and the infinity Laplacian (2006, preprint); available at arXiv:math.AP/0605002.
-
-
-
-
19
-
-
34249750887
-
-
O. Schramm and J. E. Steif, Quantitative noise sensitivity and exceptional times for percolation (2005, preprint); available at arXiv:math.PR/0504586.
-
O. Schramm and J. E. Steif, Quantitative noise sensitivity and exceptional times for percolation (2005, preprint); available at arXiv:math.PR/0504586.
-
-
-
-
20
-
-
29144451551
-
-
O. Schramm and D. B. Wilson, SLE coordinate changes, New York J. Math. 11 (2005) 659-669; available at arXiv:math.PR/0505368.
-
O. Schramm and D. B. Wilson, SLE coordinate changes, New York J. Math. 11 (2005) 659-669; available at arXiv:math.PR/0505368.
-
-
-
-
21
-
-
34249686408
-
-
S. Smirnov, Critical percolation in the plane. I. Conformal invariance and Cardy's formula. II. Continuum scaling limit, 2001, available at http://www.math.kth.se/~stas/papera/percol.ps.
-
S. Smirnov, Critical percolation in the plane. I. Conformal invariance and Cardy's formula. II. Continuum scaling limit, 2001, available at http://www.math.kth.se/~stas/papera/percol.ps.
-
-
-
-
22
-
-
0035527905
-
Critical exponents for two-dimensional percolation
-
S. Smirnov and W. Werner, Critical exponents for two-dimensional percolation, Math. Res. Lett. 8 (2001) 729-744.
-
(2001)
Math. Res. Lett
, vol.8
, pp. 729-744
-
-
Smirnov, S.1
Werner, W.2
-
23
-
-
34249712228
-
Hex marks the spot
-
September
-
I. Stewart, Hex marks the spot, Sci. Amer. 283 (September 2000) 100-103.
-
(2000)
Sci. Amer
, vol.283
, pp. 100-103
-
-
Stewart, I.1
-
24
-
-
34249710111
-
-
J. Yang, http://www.ee.umanitoba.ca/~jingyang/.
-
-
-
Yang, J.1
|