메뉴 건너뛰기




Volumn 70, Issue 13-15, 2007, Pages 2544-2551

Hysteretic Hopfield network with dynamic tunneling for crossbar switch and N-queens problem

Author keywords

Crossbar switch problem; Dynamic tunneling; Gradient descent; Hopfield network; Hysteresis; N queens problem

Indexed keywords

COMPUTATIONAL COMPLEXITY; CONVERGENCE OF NUMERICAL METHODS; CROSSBAR EQUIPMENT; HOPFIELD NEURAL NETWORKS; HYSTERESIS;

EID: 34249739672     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.06.006     Document Type: Article
Times cited : (11)

References (14)
  • 2
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79 (1982) 2554-2558
    • (1982) Proc. Natl. Acad. Sci. , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 3
    • 0004469897 scopus 로고
    • Neurons with graded response have collective computational properties like those of two state neurons
    • Hopfield J.J. Neurons with graded response have collective computational properties like those of two state neurons. Proc. Natl. Acad. Sci. 812 (1984) 3088-3092
    • (1984) Proc. Natl. Acad. Sci. , vol.812 , pp. 3088-3092
    • Hopfield, J.J.1
  • 4
    • 0000009720 scopus 로고
    • A neural network designed to solve the N-queens problem
    • Mandziuk J. A neural network designed to solve the N-queens problem. Biol. Cybern. 66 4 (1992) 375-379
    • (1992) Biol. Cybern. , vol.66 , Issue.4 , pp. 375-379
    • Mandziuk, J.1
  • 5
    • 0033184718 scopus 로고    scopus 로고
    • Hysteresis neural networks for N-queens problem
    • Nakaguchi T., Jinno K., and Tanaka M. Hysteresis neural networks for N-queens problem. IEICE Trans. Fundam. 82-A 9 (1999) 1851-1859
    • (1999) IEICE Trans. Fundam. , vol.82 -A , Issue.9 , pp. 1851-1859
    • Nakaguchi, T.1    Jinno, K.2    Tanaka, M.3
  • 6
    • 0033686714 scopus 로고    scopus 로고
    • Hybridization of gradient descent algorithms with dynamic tunneling methods for global optimization
    • RoyChowdhury P., Singh Y.P., and Chansarkar R.A. Hybridization of gradient descent algorithms with dynamic tunneling methods for global optimization. IEEE Trans. Syst. Man Cybern.-Part A 30 3 (2000) 384-390
    • (2000) IEEE Trans. Syst. Man Cybern.-Part A , vol.30 , Issue.3 , pp. 384-390
    • RoyChowdhury, P.1    Singh, Y.P.2    Chansarkar, R.A.3
  • 7
    • 0002381070 scopus 로고    scopus 로고
    • Neural networks for combinatorial optimization: a review of more than a decade of research
    • Smith K.A. Neural networks for combinatorial optimization: a review of more than a decade of research. INFORMS J. Comput. 11 1 (1999) 15-30
    • (1999) INFORMS J. Comput. , vol.11 , Issue.1 , pp. 15-30
    • Smith, K.A.1
  • 8
    • 0001663243 scopus 로고
    • An hysteresis binary neuron: a model suppressing the oscillatory behaviour of neural dynamics
    • Takefuji Y., and Lee K.C. An hysteresis binary neuron: a model suppressing the oscillatory behaviour of neural dynamics. Biol. Cybern. 64 5 (1991) 353-356
    • (1991) Biol. Cybern. , vol.64 , Issue.5 , pp. 353-356
    • Takefuji, Y.1    Lee, K.C.2
  • 9
    • 0036825899 scopus 로고    scopus 로고
    • Training feedforward network using simultaneous perturbation with dynamic tunneling
    • Thangavel P., and Kathirvalavakumar T. Training feedforward network using simultaneous perturbation with dynamic tunneling. Neurocomputing 48 (2002) 691-704
    • (2002) Neurocomputing , vol.48 , pp. 691-704
    • Thangavel, P.1    Kathirvalavakumar, T.2
  • 10
    • 0025889465 scopus 로고
    • Neural network architecture for crossbar switch control
    • Troudet T.P., and Walters S.M. Neural network architecture for crossbar switch control. IEEE Trans. Circuits Syst. 38 1 (1991) 42-56
    • (1991) IEEE Trans. Circuits Syst. , vol.38 , Issue.1 , pp. 42-56
    • Troudet, T.P.1    Walters, S.M.2
  • 11
    • 0012846328 scopus 로고    scopus 로고
    • Suppressing chaos with hysteresis in a higher order neural network
    • Wang L.P. Suppressing chaos with hysteresis in a higher order neural network. IEEE Trans. Circuits Syst.-II 43 12 (1996) 845-846
    • (1996) IEEE Trans. Circuits Syst.-II , vol.43 , Issue.12 , pp. 845-846
    • Wang, L.P.1
  • 12
    • 0025070002 scopus 로고
    • Synchronous neural networks of nonlinear threshold elements with hysteresis
    • Wang L.P., and Ross J. Synchronous neural networks of nonlinear threshold elements with hysteresis. Proc. Natl. Acad. Sci. (USA) 87 (1990) 988-992
    • (1990) Proc. Natl. Acad. Sci. (USA) , vol.87 , pp. 988-992
    • Wang, L.P.1    Ross, J.2
  • 13
    • 21744457817 scopus 로고    scopus 로고
    • A binary Hopfield neural network with hysteresis for large crossbar packet-switches
    • Xia G., Tang Z., Li Y., and Wang J. A binary Hopfield neural network with hysteresis for large crossbar packet-switches. Neurocomputing 67 (2005) 417-425
    • (2005) Neurocomputing , vol.67 , pp. 417-425
    • Xia, G.1    Tang, Z.2    Li, Y.3    Wang, J.4
  • 14
    • 0024737058 scopus 로고
    • Dynamic tunneling algorithm for global optimization
    • Yao Y. Dynamic tunneling algorithm for global optimization. IEEE Trans. Syst. Man Cybern. 19 5 (1989) 1222-1230
    • (1989) IEEE Trans. Syst. Man Cybern. , vol.19 , Issue.5 , pp. 1222-1230
    • Yao, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.