메뉴 건너뛰기




Volumn 28, Issue 11, 2007, Pages 1285-1294

A new look at discriminative training for hidden Markov models

Author keywords

Discriminative learning; Extended Baum Welch algorithm; Growth transformation; Hidden Markov model; Minimum classification error

Indexed keywords

ALGORITHMS; CLASSIFICATION (OF INFORMATION); ERROR DETECTION; HIDDEN MARKOV MODELS; OPTIMIZATION; PARAMETER ESTIMATION;

EID: 34249738104     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2006.11.022     Document Type: Article
Times cited : (10)

References (26)
  • 3
    • 34249679252 scopus 로고    scopus 로고
    • Brown, P., 1987. The Acoustic Modeling Problem in Automatic Speech Recognition, Ph.D. thesis, Carnegie Mellon University.
  • 4
    • 21944439252 scopus 로고    scopus 로고
    • Minimum classification error approach in pattern recognition
    • Chou W., and Juang B.-H. (Eds), CRC Press
    • Chou W. Minimum classification error approach in pattern recognition. In: Chou W., and Juang B.-H. (Eds). Pattern Recognition in Speech and Language Processing (2003), CRC Press 1-49
    • (2003) Pattern Recognition in Speech and Language Processing , pp. 1-49
    • Chou, W.1
  • 5
    • 20444414457 scopus 로고    scopus 로고
    • Analysis and comparison of two feature extraction/compensation algorithms
    • Deng L., Wu J., Droppo J., and Acero A. Analysis and comparison of two feature extraction/compensation algorithms. IEEE Signal Process. Lett. 12 6 (2005) 477-480
    • (2005) IEEE Signal Process. Lett. , vol.12 , Issue.6 , pp. 477-480
    • Deng, L.1    Wu, J.2    Droppo, J.3    Acero, A.4
  • 6
    • 34249675889 scopus 로고    scopus 로고
    • Deng, L., Yu, D., Acero, A., 2005. A generative modeling framework for structured hidden speech dynamics. In: Proc. of Neural Information Processing System (NIPS) Workshop, Whistler, BC, Canada, December 2005.
  • 8
    • 0025952278 scopus 로고
    • An inequality for rational functions with applications to some statistical estimation problems
    • Gopalakrishnan P., Kanevsky D., Nadas A., and Nahamoo D. An inequality for rational functions with applications to some statistical estimation problems. IEEE Trans. Inf. Theory. 37 (1991) 107-113
    • (1991) IEEE Trans. Inf. Theory. , vol.37 , pp. 107-113
    • Gopalakrishnan, P.1    Kanevsky, D.2    Nadas, A.3    Nahamoo, D.4
  • 9
    • 85009119467 scopus 로고    scopus 로고
    • Gunawardana, A., Byrne, W., 2001. Discriminative speaker adaptation with conditional maximum likelihood linear regression. In: Proc. EUROSPEECH.
  • 10
    • 0141591459 scopus 로고    scopus 로고
    • He, X., Chou, W., 2003. Minimum classification error linear regression for acoustic model adaptation of continuous density HMMs. In: Proc. ICASSP.
  • 11
    • 34250764726 scopus 로고    scopus 로고
    • He, X., Deng, L., Chou, W., 2006. A novel learning method for hidden Markov models in speech and audio processing. In: Proc. IEEE Workshop on Multimedia Signal Processing, Victoria, BC.
  • 12
    • 34250609333 scopus 로고
    • Sur les fonctions convexes et les inegalites entre les valeurs moyennes
    • Jensen J.L.W.V. Sur les fonctions convexes et les inegalites entre les valeurs moyennes. Acta Math. (1906) 175-193
    • (1906) Acta Math. , pp. 175-193
    • Jensen, J.L.W.V.1
  • 13
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classification
    • Juang B.-H., and Katagiri S. Discriminative learning for minimum error classification. IEEE Trans. Signal Process. 40 12 (1992) 3043-3054
    • (1992) IEEE Trans. Signal Process. , vol.40 , Issue.12 , pp. 3043-3054
    • Juang, B.-H.1    Katagiri, S.2
  • 15
    • 33745208000 scopus 로고    scopus 로고
    • Macherey, W., Haferkamp, L., Schluter, R., Ney, H., 2005. Investigations on error minimizing training criteria for discriminative training in automatic speech Recognition. In: Proc. Interspeech, Lisbon, Portugal, pp. 2133-2136.
  • 17
    • 34249711986 scopus 로고    scopus 로고
    • Normandin, Y., 1991. Hidden Markov Models, Maximum Mutual Information Estimation, and the Speech Recognition Problem, Ph.D. dissertation, McGill University, Montreal.
  • 18
    • 34249709569 scopus 로고    scopus 로고
    • Povey, D., 2004. Discriminative Training for Large Vocabulary Speech Recognition, Ph.D. thesis, Cambridge University, Cambridge, UK.
  • 19
    • 85009165931 scopus 로고    scopus 로고
    • Povey, D., Gales, M.J.F., Kim, D.Y., Woodland, P.C., 2003. MMI-MAP and MPE-MAP for acoustic model adaptation, In: Proc. Eurospeech.
  • 20
    • 34249738663 scopus 로고    scopus 로고
    • Povey, D., Kingsbury, B., Mangu, L., Saon, G., Soltau, H., Zweig, G., 2004. fMPE: Discriminatively trained features for speech recognition. In: Proc. DARPA EARS RT-04 Workshop, November 7-10, Palisades, NY, Paper No. 35.
  • 21
    • 0036296863 scopus 로고    scopus 로고
    • Povey, D., Woodland, P.C., 2002. Minimum phone error and I-Smoothing for improved discriminative training. In: Proc. ICASSP.
  • 23
    • 0032206267 scopus 로고    scopus 로고
    • Speech trajectory discrimination using the minimum classification error learning
    • Rathinavalu C., and Deng L. Speech trajectory discrimination using the minimum classification error learning. IEEE Trans. Speech Audio Process. 6 6 (1998) 505-515
    • (1998) IEEE Trans. Speech Audio Process. , vol.6 , Issue.6 , pp. 505-515
    • Rathinavalu, C.1    Deng, L.2
  • 24
    • 34249662803 scopus 로고    scopus 로고
    • Roux, J., McDermott, E., 2005. Optimization for discriminative training. In: Proc. INTERSPEECH.
  • 25
    • 0035342391 scopus 로고    scopus 로고
    • Comparison of discriminative training criteria and optimization methods for speech recognition
    • Schluter R., Macherey W., Muller B., and Ney H. Comparison of discriminative training criteria and optimization methods for speech recognition. Speech Commun. 34 (2001) 287-310
    • (2001) Speech Commun. , vol.34 , pp. 287-310
    • Schluter, R.1    Macherey, W.2    Muller, B.3    Ney, H.4
  • 26
    • 34249735972 scopus 로고    scopus 로고
    • Woodland, P.C., Povey, D., 2000. Large scale discriminative training for speech recognition. In: Proc. ITRW ASR, ISCA.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.