메뉴 건너뛰기




Volumn 26, Issue 13, 2007, Pages 2686-2698

Parsimonious analysis of time-dependent effects in the Cox model

Author keywords

Non proportional hazards; Over fit; Proportional hazards model; Survival analysis; Time varying coefficients

Indexed keywords

ANTINEOPLASTIC AGENT;

EID: 34249698165     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.2742     Document Type: Article
Times cited : (27)

References (22)
  • 1
    • 0000336139 scopus 로고
    • Regression models and life-tables (with discussion)
    • Cox DR. Regression models and life-tables (with discussion). Journal of the Royal Statistical Society B 1972; 34:187-220.
    • (1972) Journal of the Royal Statistical Society B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 3
    • 0001018122 scopus 로고
    • Investigating time dependence in Cox's proportional hazards model
    • Pettitt AN, Bin Daud I. Investigating time dependence in Cox's proportional hazards model. Applied Statistics 1990; 39(3):313-329.
    • (1990) Applied Statistics , vol.39 , Issue.3 , pp. 313-329
    • Pettitt, A.N.1    Bin Daud, I.2
  • 4
    • 0004509186 scopus 로고
    • Regression using fractional polynomials of continuous covariates: Parsimonious parametric modelling (with discussion)
    • Royston P, Altman DG. Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling (with discussion). Applied Statistics 1994; 43:429-467.
    • (1994) Applied Statistics , vol.43 , pp. 429-467
    • Royston, P.1    Altman, D.G.2
  • 5
    • 0037446009 scopus 로고    scopus 로고
    • Dynamic Cox modelling based on fractional polynomials: Time-variations in gastric cancer prognosis
    • Berger U, Schäfer J, Ulm K. Dynamic Cox modelling based on fractional polynomials: time-variations in gastric cancer prognosis. Statistics in Medicine 2003; 22:1163-1180.
    • (2003) Statistics in Medicine , vol.22 , pp. 1163-1180
    • Berger, U.1    Schäfer, J.2    Ulm, K.3
  • 6
    • 0035643855 scopus 로고    scopus 로고
    • Fractional polynomial model selection procedures: Investigation of type I error rate
    • Ambler G, Royston P. Fractional polynomial model selection procedures: investigation of type I error rate. Journal of Statistical Computation and Simulation 2001; 69:89-108.
    • (2001) Journal of Statistical Computation and Simulation , vol.69 , pp. 89-108
    • Ambler, G.1    Royston, P.2
  • 7
    • 0033474286 scopus 로고    scopus 로고
    • Sauerbrei W, Royston P. Building multivariable prognostic and diagnostic models: transformations of the predictors by using fractional polynomials. Journal of the Royal Statistical Society A 1999; 162:71-94. Corrigendum: Journal of the Royal Statistical Society A 2002; 165:399-400.
    • Sauerbrei W, Royston P. Building multivariable prognostic and diagnostic models: transformations of the predictors by using fractional polynomials. Journal of the Royal Statistical Society A 1999; 162:71-94. Corrigendum: Journal of the Royal Statistical Society A 2002; 165:399-400.
  • 8
    • 0022681316 scopus 로고
    • Treatment effects in competing-risks analysis of prostate cancer data
    • Kay R. Treatment effects in competing-risks analysis of prostate cancer data. Biometrics 1986; 42:203-211.
    • (1986) Biometrics , vol.42 , pp. 203-211
    • Kay, R.1
  • 9
    • 0028362674 scopus 로고
    • Assessing time-by-covariate interactions in proportional hazards regression models using cubic spline functions
    • Hess KR. Assessing time-by-covariate interactions in proportional hazards regression models using cubic spline functions. Statistics in Medicine 1994; 13:1045-1062.
    • (1994) Statistics in Medicine , vol.13 , pp. 1045-1062
    • Hess, K.R.1
  • 10
    • 0031281322 scopus 로고    scopus 로고
    • Gaining more flexibility in Cox proportional hazards regression models with cubic spline functions
    • Heinzl H, Kaider A. Gaining more flexibility in Cox proportional hazards regression models with cubic spline functions. Computer Methods and Programs in Biomedicine 1997; 54:201-208.
    • (1997) Computer Methods and Programs in Biomedicine , vol.54 , pp. 201-208
    • Heinzl, H.1    Kaider, A.2
  • 13
    • 21144472187 scopus 로고
    • Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis
    • Gray RJ. Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. Journal of the American Statistical Association 1992; 87:942-951.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 942-951
    • Gray, R.J.1
  • 14
    • 0027995401 scopus 로고
    • Spline-based tests in survival analysis
    • Gray RJ. Spline-based tests in survival analysis. Biometrics 1994; 50:640-652.
    • (1994) Biometrics , vol.50 , pp. 640-652
    • Gray, R.J.1
  • 15
    • 0029586866 scopus 로고
    • Time-dependent effects of fixed covariates in Cox regression
    • Verweij PJM, van Houwelingen HC. Time-dependent effects of fixed covariates in Cox regression. Biometrics 1995; 51:1550-1556.
    • (1995) Biometrics , vol.51 , pp. 1550-1556
    • Verweij, P.J.M.1    van Houwelingen, H.C.2
  • 16
    • 0000501656 scopus 로고
    • Information theory and an extension of the entropy maximization principle
    • Petrov BN, Csak F eds, Kiado: Akademiai Kiado, Budapest
    • Akaike H. Information theory and an extension of the entropy maximization principle. In Proceedings of the Second International Symposium on Information Theory, Petrov BN, Csak F (eds). Kiado: Akademiai Kiado, Budapest, 1973; 267-281.
    • (1973) Proceedings of the Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 17
    • 0004282518 scopus 로고    scopus 로고
    • Version 8. SAS Institute: Cary, NC
    • SAS/STAT User's Guide, Version 8. SAS Institute: Cary, NC, 1999.
    • (1999) SAS/STAT User's Guide
  • 22
    • 34249742680 scopus 로고    scopus 로고
    • Joint estimation of time-dependent and non-linear effects of continuous covariates on survival
    • in press
    • Abrahamowicz M, MacKenzie TA. Joint estimation of time-dependent and non-linear effects of continuous covariates on survival. Statistics in Medicine 2006, in press.
    • (2006) Statistics in Medicine
    • Abrahamowicz, M.1    MacKenzie, T.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.