-
2
-
-
0014297593
-
The effectiveness of adjustment by subclassification in removing bias in observational studies
-
Cochran WG. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 1968; 24: 295-313.
-
(1968)
Biometrics
, vol.24
, pp. 295-313
-
-
Cochran, W.G.1
-
3
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
Rosenbaum P, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70: 41-55
-
(1983)
Biometrika
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.1
Rubin, D.B.2
-
4
-
-
0030862072
-
Estimating causal effects from large data sets using propensity score
-
Rubin DB. Estimating causal effects from large data sets using propensity score. Ann Intern Med 1997; 127: 757-763.
-
(1997)
Ann Intern Med
, vol.127
, pp. 757-763
-
-
Rubin, D.B.1
-
5
-
-
34249335216
-
-
SPSS Statistical Software
-
SPSS Statistical Software. http:/www.spss.com
-
-
-
-
6
-
-
34249284672
-
Cardiovascular trials: Odds ratios, why to assess them, and how to do so
-
in press
-
Cleophas TJ, Hadj-Chaib A, Zwinderman AH. Cardiovascular trials: odds ratios, why to assess them, and how to do so. Am J Ther 2007; 11: in press.
-
(2007)
Am J Ther
, pp. 11
-
-
Cleophas, T.J.1
Hadj-Chaib, A.2
Zwinderman, A.H.3
-
7
-
-
0029737556
-
Wine drinking and other dietary characteristics in males under 60 before and after acute myocardial infarction
-
Cleophas TJ, Tuinenburg E, Van der Meulen J, Kauw FH. Wine drinking and other dietary characteristics in males under 60 before and after acute myocardial infarction. Angiology 1996; 47: 789-96.
-
(1996)
Angiology
, vol.47
, pp. 789-796
-
-
Cleophas, T.J.1
Tuinenburg, E.2
Van der Meulen, J.3
Kauw, F.H.4
-
8
-
-
0041626110
-
Comparison of logistic regression versus propensity scores when the number of events is low and there are multiple confounders
-
Soledad Cepeda M, Boston R, Fairer JT, Strom BL. Comparison of logistic regression versus propensity scores when the number of events is low and there are multiple confounders. Am J Epidemiol 2003; 158: 280-7.
-
(2003)
Am J Epidemiol
, vol.158
, pp. 280-287
-
-
Soledad Cepeda, M.1
Boston, R.2
Fairer, J.T.3
Strom, B.L.4
-
9
-
-
0023576205
-
Confounding in epidemiological studies: The adequacy of the control groups as a measure of confounding
-
Wickramaratne PJ, Holford TR. Confounding in epidemiological studies: the adequacy of the control groups as a measure of confounding. Biometrics 1987; 43: 751-65.
-
(1987)
Biometrics
, vol.43
, pp. 751-765
-
-
Wickramaratne, P.J.1
Holford, T.R.2
-
10
-
-
1542334708
-
Propensity scores modeling strategies for the causal analysis of observational data
-
Huppler Hullsiek K, Louis TA. Propensity scores modeling strategies for the causal analysis of observational data. Biostat 2002; 3: 179-93.
-
(2002)
Biostat
, vol.3
, pp. 179-193
-
-
Huppler Hullsiek, K.1
Louis, T.A.2
-
11
-
-
0034098738
-
Commentary: Ruminations on the intent to treat
-
Begg CB. Commentary: ruminations on the intent to treat. Control Clin Trials 2000; 21: 241-3.
-
(2000)
Control Clin Trials
, vol.21
, pp. 241-243
-
-
Begg, C.B.1
-
12
-
-
0000474486
-
A note on the use of Laplace's approximations for non-linear mixed-effects models
-
Beal SL, Sheiner LB. A note on the use of Laplace's approximations for non-linear mixed-effects models. Biometrika 1996; 83: 447-52.
-
(1996)
Biometrika
, vol.83
, pp. 447-452
-
-
Beal, S.L.1
Sheiner, L.B.2
-
13
-
-
34249322863
-
-
SAS
-
SAS. http:www.prw.le.ac.uk/epidemiol/personal/ajs22/meta/macros. sas
-
-
-
-
14
-
-
34249331897
-
-
NONMEM Project Group, University of California, San Francisco
-
Boeckman AJ, Sheiner LB, Beal SL. 1984 NONMEM user guide: part V. NONMEM Project Group, University of California, San Francisco.
-
(1984)
NONMEM user guide
, Issue.PART V
-
-
Boeckman, A.J.1
Sheiner, L.B.2
Beal, S.L.3
|