-
1
-
-
0026476056
-
-
Chu M., Patel M.G., Gullo V.P., Truumees I., and Puar M.S. J. Org. Chem. 57 (1992) 5817
-
(1992)
J. Org. Chem.
, vol.57
, pp. 5817
-
-
Chu, M.1
Patel, M.G.2
Gullo, V.P.3
Truumees, I.4
Puar, M.S.5
-
2
-
-
0027265264
-
-
Chu M., Truumees I., Gunnarsson I., Bishop W.R., Kreutner W., Horan A.C., Gullo V.P., and Puar M.S. J. Antibiot. 46 (1993) 554
-
(1993)
J. Antibiot.
, vol.46
, pp. 554
-
-
Chu, M.1
Truumees, I.2
Gunnarsson, I.3
Bishop, W.R.4
Kreutner, W.5
Horan, A.C.6
Gullo, V.P.7
Puar, M.S.8
-
3
-
-
0028209188
-
-
Sugano M., Sata A., Iijima Y., Furuya K., Haruyama H., Yoda K., and Hata T. J. Org. Chem. 59 (1994) 564
-
(1994)
J. Org. Chem.
, vol.59
, pp. 564
-
-
Sugano, M.1
Sata, A.2
Iijima, Y.3
Furuya, K.4
Haruyama, H.5
Yoda, K.6
Hata, T.7
-
4
-
-
0028788425
-
-
Sugano M., Sata A., Iijima Y., Furuya K., Kuwano H., and Hata T. J. Antibiot. 48 (1995) 1188
-
(1995)
J. Antibiot.
, vol.48
, pp. 1188
-
-
Sugano, M.1
Sata, A.2
Iijima, Y.3
Furuya, K.4
Kuwano, H.5
Hata, T.6
-
5
-
-
0025743330
-
-
Sugano M., Sato A., Iijima Y., Oshima T., Furuya K., Kuwano H., Hata T., and Hanzawa H. J. Am. Chem. Soc. 113 (1991) 5463
-
(1991)
J. Am. Chem. Soc.
, vol.113
, pp. 5463
-
-
Sugano, M.1
Sato, A.2
Iijima, Y.3
Oshima, T.4
Furuya, K.5
Kuwano, H.6
Hata, T.7
Hanzawa, H.8
-
21
-
-
34249311688
-
-
note
-
This approach stands in contrast to those generally set forth by other researchers in which formation of the pyrone unit is effected after macrocycle formation. Exceptions are found in the work of Hsung (Ref. 3j) and Halcomb (Ref. 3m). In the former case, pyrone and macrocycle are formed concurrently. In the latter, macrocyclization is effected with the oxadecalin system in place, albeit in modest yield.
-
-
-
-
25
-
-
0034704263
-
-
Seth P.P., Chen D., Wang J., Gao X., and Totah N.I. Tetrahedron 56 (2000) 10185
-
(2000)
Tetrahedron
, vol.56
, pp. 10185
-
-
Seth, P.P.1
Chen, D.2
Wang, J.3
Gao, X.4
Totah, N.I.5
-
27
-
-
34249303514
-
-
note
-
Tricyclic ether 11a is formed via internal Michael addition of the primary alcohol. Regeneration of enone 11 is readily achieved upon treatment of the cyclic ether with an excess of strong base, for example: {A figure is presented}
-
-
-
-
28
-
-
34249324566
-
-
note
-
The use of alternative protecting groups for the primary alcohol was briefly explored. TBDMS, TBDPS, and PMB ethers were found to be incompatible with the reductive conditions used to generate enones of type 15.
-
-
-
-
32
-
-
33750283011
-
-
Miyaura N., Ishiyama T., Sasaki H., Ishikawa M., Satoh M., and Suzuki A. J. Am. Chem. Soc. 111 (1989) 314
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 314
-
-
Miyaura, N.1
Ishiyama, T.2
Sasaki, H.3
Ishikawa, M.4
Satoh, M.5
Suzuki, A.6
-
35
-
-
0034710467
-
-
Frank S.A., Chen H., Kunz R.K., Schnaderbeck M.J., and Roush W.R. Org. Lett. 2 (2000) 2691
-
(2000)
Org. Lett.
, vol.2
, pp. 2691
-
-
Frank, S.A.1
Chen, H.2
Kunz, R.K.3
Schnaderbeck, M.J.4
Roush, W.R.5
|