메뉴 건너뛰기




Volumn 23, Issue 6, 2007, Pages 983-988

Existence of semilinear differential equations with nonlocal initial conditions

Author keywords

Compact semigroup; Mild solution; Nonlocal condition

Indexed keywords


EID: 34249094504     PISSN: 14398516     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10114-005-0839-3     Document Type: Article
Times cited : (23)

References (16)
  • 1
    • 44949272606 scopus 로고
    • Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchuy problem
    • Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchuy problem. J. Math. Anal. Appl., 162, 494-505 (1991)
    • (1991) J. Math. Anal. Appl , vol.162 , pp. 494-505
    • Byszewski, L.1
  • 2
    • 0000297319 scopus 로고
    • Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions
    • Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl., 179, 630-637 (1993)
    • (1993) J. Math. Anal. Appl , vol.179 , pp. 630-637
    • Deng, K.1
  • 3
    • 84948514180 scopus 로고
    • Theorems about the existence and uniqueness of a solutions of a nonlocal Cauchuy problem in a Banach space
    • Byszewski, L., Lakshmikantham, V.: Theorems about the existence and uniqueness of a solutions of a nonlocal Cauchuy problem in a Banach space. Appl. Anal., 40, 11-19 (1990)
    • (1990) Appl. Anal , vol.40 , pp. 11-19
    • Byszewski, L.1    Lakshmikantham, V.2
  • 4
    • 0001331533 scopus 로고
    • Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchuy problem
    • Byszewski, L.: Existence and uniqueness of solutions of semilinear evolution nonlocal Cauchuy problem. Zesz. Nauk. Pol. Rzes. Mat. Fiz., 18, 109-112 (1993)
    • (1993) Zesz. Nauk. Pol. Rzes. Mat. Fiz , vol.18 , pp. 109-112
    • Byszewski, L.1
  • 5
    • 38249006923 scopus 로고
    • Existence and uniqueness of solutions of semilinear evolution nonlocal parabolic equations
    • Jackson, D.: Existence and uniqueness of solutions of semilinear evolution nonlocal parabolic equations. J. Math. Anal. Appl., 172, 256-265 (1993)
    • (1993) J. Math. Anal. Appl , vol.172 , pp. 256-265
    • Jackson, D.1
  • 6
    • 0000500160 scopus 로고    scopus 로고
    • Semilinear integrodifferential equations with nonlocal Cauchy Problems
    • Lin, Y., Liu, J.: Semilinear integrodifferential equations with nonlocal Cauchy Problems. Nonlinear Analysis, 26, 1023-1033 (1996)
    • (1996) Nonlinear Analysis , vol.26 , pp. 1023-1033
    • Lin, Y.1    Liu, J.2
  • 7
    • 0031153492 scopus 로고    scopus 로고
    • Global existence for semilinear evolution equations with nonlocal conditions
    • Ntouyas, S., Tsamotas, P.: Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal. Appl., 210, 679-687 (1997)
    • (1997) J. Math. Anal. Appl , vol.210 , pp. 679-687
    • Ntouyas, S.1    Tsamotas, P.2
  • 8
    • 84958531222 scopus 로고    scopus 로고
    • Global existence for semilinear integrodifferential equations with delay and nonlocal conditions
    • Ntouyas, S., Tsamotas, P.: Global existence for semilinear integrodifferential equations with delay and nonlocal conditions. Anal. Appl., 64, 99-105 (1997)
    • (1997) Anal. Appl , vol.64 , pp. 99-105
    • Ntouyas, S.1    Tsamotas, P.2
  • 9
    • 0032186835 scopus 로고    scopus 로고
    • Existence of solutions of a semilinear functional-differential evolution nonlocal problem
    • Byszewski, L., Akca, H.: Existence of solutions of a semilinear functional-differential evolution nonlocal problem. Nonlinear Analysis, 34, 65-72 (1998)
    • (1998) Nonlinear Analysis , vol.34 , pp. 65-72
    • Byszewski, L.1    Akca, H.2
  • 10
    • 0034140628 scopus 로고    scopus 로고
    • Existence results for a class of abstract nonlocal Cauchy problems
    • Aizicovici, S., Mckibben, M.: Existence results for a class of abstract nonlocal Cauchy problems. Nonlinear Analysis, 39, 649-668 (2000)
    • (2000) Nonlinear Analysis , vol.39 , pp. 649-668
    • Aizicovici, S.1    Mckibben, M.2
  • 11
    • 0035877526 scopus 로고    scopus 로고
    • Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces
    • Benchohra, M., Ntouyas, S.: Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces. J. Math. Anal. Appl., 258, 573-590 (2001)
    • (2001) J. Math. Anal. Appl , vol.258 , pp. 573-590
    • Benchohra, M.1    Ntouyas, S.2
  • 12
    • 31244434224 scopus 로고    scopus 로고
    • Chanderasekran: Nonlocal Cauchy problems for delay integrodifferential equations of Sobolev type in Banach spaces
    • Balachandran, K., Park, J., Chanderasekran: Nonlocal Cauchy problems for delay integrodifferential equations of Sobolev type in Banach spaces. Appl. Math. Letters, 15, 845-854 (2002)
    • (2002) Appl. Math. Letters , vol.15 , pp. 845-854
    • Balachandran, K.1    Park, J.2
  • 13
    • 0038137295 scopus 로고    scopus 로고
    • Existence of solutions for neutral functional differential evolution equations with nonlocal conditions
    • Fu, X., Ezzinbi, K.: Existence of solutions for neutral functional differential evolution equations with nonlocal conditions. Nonlinear Analysis, 54, 215-227 (2003)
    • (2003) Nonlinear Analysis , vol.54 , pp. 215-227
    • Fu, X.1    Ezzinbi, K.2
  • 14
    • 0345134885 scopus 로고    scopus 로고
    • A remark on the mild solutions of nonlocal evolution equations
    • Liu, J.: A remark on the mild solutions of nonlocal evolution equations. Semigroup Forum, 66, 63-67 (2003)
    • (2003) Semigroup Forum , vol.66 , pp. 63-67
    • Liu, J.1
  • 15
    • 0041289943 scopus 로고
    • Multivalued differential equations in separable Banach spaces
    • Kisielewicz, M.: Multivalued differential equations in separable Banach spaces. J. Optim. Theory Appl., 37, 231-249 (1982)
    • (1982) J. Optim. Theory Appl , vol.37 , pp. 231-249
    • Kisielewicz, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.