메뉴 건너뛰기




Volumn 171, Issue 7, 2007, Pages 434-439

No regrets about no-regret

Author keywords

Game theory; Multi agent learning; Regret minimization

Indexed keywords

LEARNING ALGORITHMS; LEARNING SYSTEMS; MULTI AGENT SYSTEMS; SAFETY FACTOR;

EID: 34249074707     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artint.2006.12.007     Document Type: Article
Times cited : (14)

References (9)
  • 1
    • 0029513526 scopus 로고    scopus 로고
    • P. Auer, N. Cesa-Bianchi, Y. Freund, R.E. Schapire, Gambling in a rigged casino: the adversarial multi-armed bandit problem, in: Proceedings of the 36th Symposium on Foundations of Computer Science, 1995
  • 2
    • 34249002403 scopus 로고    scopus 로고
    • Y. Chang, P.R. Cohen, C.T. Morrison, W. Kerr, R.S. Amant, The Jean system, in: Proceedings of the International Conference on Development and Learning, 2006
  • 3
    • 34249027427 scopus 로고    scopus 로고
    • Y. Chang, L.P. Kaelbling, Playing is believing: The role of beliefs in multi-agent learning, in: Advances in Neural Information Processing Systems, 2001
  • 4
    • 31844456904 scopus 로고    scopus 로고
    • Y. Chang, L.P. Kaelbling, Hedged learning: Regret-minimization with learning experts, in: International Conference on Machine Learning, 2005
  • 5
    • 33845304828 scopus 로고    scopus 로고
    • D.P. de Farias, N. Meggido, How to combine expert (or novice) advice when actions impact the environment, in: Advances in Neural Information Processing Systems, 2004
  • 6
    • 0002267135 scopus 로고    scopus 로고
    • Adaptive game playing using multiplicative weights
    • Freund Y., and Schapire R.E. Adaptive game playing using multiplicative weights. Games and Economic Behavior 29 (1999) 79-103
    • (1999) Games and Economic Behavior , vol.29 , pp. 79-103
    • Freund, Y.1    Schapire, R.E.2
  • 7
    • 34249016124 scopus 로고    scopus 로고
    • M. Kearns, S. Singh, Near-optimal reinforcement learning in polynomial time, in: Proceedings of the International Conference on Machine Learning, 1998
  • 8
    • 34249038159 scopus 로고    scopus 로고
    • S. Mannor, N. Shimkin, The empirical Bayes envelope approach to regret minimization, Technion Technical Report EE-No1261, 2000
  • 9
    • 33749242078 scopus 로고    scopus 로고
    • A. Strehl, C. Mesterharm, M.L. Littman, H. Hirsh, Experience-efficient learning in associative bandit problems, in: Proceedings of the International Conference on Machine Learning, 2006


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.