-
3
-
-
0242375715
-
There are planar graphs almost as good as the complete graph
-
L. P. CHEW, There are planar graphs almost as good as the complete graph, J. Comput. System Sci., 39 (1989), pp. 205-219.
-
(1989)
J. Comput. System Sci
, vol.39
, pp. 205-219
-
-
CHEW, L.P.1
-
4
-
-
38249032698
-
The expected size of some graphs in computational geometry
-
L. DEVROYE, The expected size of some graphs in computational geometry, Comput. Math. Appl., 15 (1988), pp. 53-64.
-
(1988)
Comput. Math. Appl
, vol.15
, pp. 53-64
-
-
DEVROYE, L.1
-
5
-
-
0023535759
-
-
D. P. DOBKIN, S. J. FRIEDMAN, AND K. J. SUPOWIT, Delaunay graphs are almost as good as complete graphs, in Proceedings of the 28th Annual Symposium on the Foundations of Computer Science, Los Angeles, 1987, pp. 20-26. Also in Discrete Comput. Geom., 5 (1990), pp. 399-407.
-
D. P. DOBKIN, S. J. FRIEDMAN, AND K. J. SUPOWIT, Delaunay graphs are almost as good as complete graphs, in Proceedings of the 28th Annual Symposium on the Foundations of Computer Science, Los Angeles, 1987, pp. 20-26. Also in Discrete Comput. Geom., 5 (1990), pp. 399-407.
-
-
-
-
6
-
-
31244438349
-
Beta-skeletons have unbounded dilation
-
D. EPPSTEIN, Beta-skeletons have unbounded dilation, Comput. Geom., 23 (2002), pp. 43-52.
-
(2002)
Comput. Geom
, vol.23
, pp. 43-52
-
-
EPPSTEIN, D.1
-
7
-
-
0642269484
-
-
North-Holland, Amsterdam
-
D. EPPSTEIN, Spanning trees and spanners, Handbook of Computational Geometry, North-Holland, Amsterdam, 2000, pp. 425-461.
-
(2000)
Spanning trees and spanners, Handbook of Computational Geometry
, pp. 425-461
-
-
EPPSTEIN, D.1
-
8
-
-
84963085136
-
A new statistical approach to geographic variation analysis
-
K. R. GABRIEL AND R. R. SOKAL, A new statistical approach to geographic variation analysis, Systematic Zoology, 18 (1969), pp. 259-278.
-
(1969)
Systematic Zoology
, vol.18
, pp. 259-278
-
-
GABRIEL, K.R.1
SOKAL, R.R.2
-
9
-
-
0026924875
-
Relative neighborhood graphs and their relatives
-
J. W. JAROMCZYK AND G. T. TOUSSAINT, Relative neighborhood graphs and their relatives, in Proceedings of the IEEE, 80 (1992), pp. 1502-1517.
-
(1992)
Proceedings of the IEEE
, vol.80
, pp. 1502-1517
-
-
JAROMCZYK, J.W.1
TOUSSAINT, G.T.2
-
10
-
-
84976713672
-
The Delaunay triangulation closely approximates the complete Euclidean graph
-
Proceedings of the 1st Workshop Algorithms Data Struct, Ottawa, Canada, Springer-Verlag
-
J. M. KEIL AND C. A. GUTWIN, The Delaunay triangulation closely approximates the complete Euclidean graph, in Proceedings of the 1st Workshop Algorithms Data Struct., Ottawa, Canada, Lecture Notes in Computer Science 382, Springer-Verlag, 1989, pp. 47-56.
-
(1989)
Lecture Notes in Computer Science
, vol.382
, pp. 47-56
-
-
KEIL, J.M.1
GUTWIN, C.A.2
-
11
-
-
0001837015
-
Classes of graphs which approximate the complete Euclidean graph
-
J. M. KEIL AND C. A. GUTWIN, Classes of graphs which approximate the complete Euclidean graph, Discrete Comput. Geom., 7 (1992), pp. 13-28.
-
(1992)
Discrete Comput. Geom
, vol.7
, pp. 13-28
-
-
KEIL, J.M.1
GUTWIN, C.A.2
-
12
-
-
85012727894
-
-
Geom, G. T. Toussaint, ed, Elsevier, Amsterdam
-
D. G. KIRKPATRICK AND J. D. RADKE, A framework for computational morphology, Comput. Geom., G. T. Toussaint, ed., Elsevier, Amsterdam, 1985, pp. 217-248.
-
(1985)
A framework for computational morphology, Comput
, pp. 217-248
-
-
KIRKPATRICK, D.G.1
RADKE, J.D.2
-
13
-
-
0019144223
-
Properties of Gabriel graphs relevant to geographic variation research and the clustering of points in the plane
-
D. W. MATULA AND R. R. SOKAL, Properties of Gabriel graphs relevant to geographic variation research and the clustering of points in the plane, Geograph. Anal., 12 (1980), pp. 205-222.
-
(1980)
Geograph. Anal
, vol.12
, pp. 205-222
-
-
MATULA, D.W.1
SOKAL, R.R.2
-
14
-
-
34249029185
-
-
C. MCDIARMID, On the method of bounded differences, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 141, Cambridge University Press, Cambridge, UK, 1989, pp. 148-188.
-
C. MCDIARMID, On the method of bounded differences, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 141, Cambridge University Press, Cambridge, UK, 1989, pp. 148-188.
-
-
-
-
16
-
-
0019213414
-
The relative neighborhood graph of a finite planar set
-
G. T. TOUSSAINT, The relative neighborhood graph of a finite planar set, Pattern Recognition, 12 (1980), pp. 261-268.
-
(1980)
Pattern Recognition
, vol.12
, pp. 261-268
-
-
TOUSSAINT, G.T.1
|