메뉴 건너뛰기




Volumn 18, Issue 3, 2007, Pages 917-920

A convex approach to validation-based learning of the regularization constant

Author keywords

Convex optimization; Model selection; Regularization

Indexed keywords

ALGORITHMS; LEAST SQUARES APPROXIMATIONS; NEURAL NETWORKS; OPTIMIZATION; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 34248670883     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2007.891187     Document Type: Article
Times cited : (6)

References (22)
  • 1
    • 8444241860 scopus 로고    scopus 로고
    • Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
    • G. C. Cawley and N. L. C. Talbot, "Fast exact leave-one-out cross-validation of sparse least-squares support vector machines," Neural Netw., vol. 17, no. 10, pp. 1467-1475, 2004.
    • (2004) Neural Netw , vol.17 , Issue.10 , pp. 1467-1475
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 2
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, no. 1-3, pp. 131-159, 2002.
    • (2002) Mach. Learn , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 4
    • 0001605679 scopus 로고
    • Universal donsker classes and metric entropy
    • R. M. Dudley, "Universal donsker classes and metric entropy," Ann. Probability, vol. 15, no. 4, pp. 1306-1326, 1987.
    • (1987) Ann. Probability , vol.15 , Issue.4 , pp. 1306-1326
    • Dudley, R.M.1
  • 6
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • F. Girosi, M. Jones, and T. Poggio, "Regularization theory and neural networks architectures," Neural Comput., vol. 7, pp. 219-269, 1995.
    • (1995) Neural Comput , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 7
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • G. H. Golub, M. Heath, and G. Wahba, "Generalized cross-validation as a method for choosing a good ridge parameter," Technometrics, vol. 21, pp. 215-223, 1979.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 9
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, no. 1, pp. 55-82, 1970.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-82
    • Hoerl, A.E.1    Kennard, R.W.2
  • 11
    • 34248636137 scopus 로고    scopus 로고
    • Primal-dual kernel machines,
    • Ph.D. dissertation, Faculty Eng, K. U. Leuven, Leuven, Belgium
    • K. Pelckmans, "Primal-dual kernel machines," Ph.D. dissertation, Faculty Eng., K. U. Leuven, Leuven, Belgium, 2005.
    • (2005)
    • Pelckmans, K.1
  • 12
    • 33644990982 scopus 로고    scopus 로고
    • Additive regularization trade-off: Fusion of training and validation levels in kernel methods
    • Mar
    • K. Pelckmans, J. A. K. Suykens, and B. De Moor, "Additive regularization trade-off: Fusion of training and validation levels in kernel methods," Mach. Learn., vol. 62, no. 3, pp. 217-252, Mar. 2006.
    • (2006) Mach. Learn , vol.62 , Issue.3 , pp. 217-252
    • Pelckmans, K.1    Suykens, J.A.K.2    De Moor, B.3
  • 13
    • 34248672468 scopus 로고    scopus 로고
    • K. Pelckmans, J. A. K. Suykens, and B. De Moor, ESAT-SISTA, K. U. Leuven, A convex approach to learning the ridge based on CV, Leuven, Belgium, Tech. Rep. 05-216, 2005.
    • K. Pelckmans, J. A. K. Suykens, and B. De Moor, ESAT-SISTA, K. U. Leuven, "A convex approach to learning the ridge based on CV," Leuven, Belgium, Tech. Rep. 05-216, 2005.
  • 16
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • J. A. K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle, "Weighted least squares support vector machines: Robustness and sparse approximation," Neurocomput., vol. 48, no. 1-4, pp. 85-105, 2002.
    • (2002) Neurocomput , vol.48 , Issue.1-4 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 18
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the LASSO
    • R. J. Tibshirani, "Regression shrinkage and selection via the LASSO," J. Roy. Statist. Soc., vol. 58, pp. 267-288, 1996.
    • (1996) J. Roy. Statist. Soc , vol.58 , pp. 267-288
    • Tibshirani, R.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.