-
1
-
-
8444241860
-
Fast exact leave-one-out cross-validation of sparse least-squares support vector machines
-
G. C. Cawley and N. L. C. Talbot, "Fast exact leave-one-out cross-validation of sparse least-squares support vector machines," Neural Netw., vol. 17, no. 10, pp. 1467-1475, 2004.
-
(2004)
Neural Netw
, vol.17
, Issue.10
, pp. 1467-1475
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
2
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, no. 1-3, pp. 131-159, 2002.
-
(2002)
Mach. Learn
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
4
-
-
0001605679
-
Universal donsker classes and metric entropy
-
R. M. Dudley, "Universal donsker classes and metric entropy," Ann. Probability, vol. 15, no. 4, pp. 1306-1326, 1987.
-
(1987)
Ann. Probability
, vol.15
, Issue.4
, pp. 1306-1326
-
-
Dudley, R.M.1
-
5
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, "Least angle regression," Ann. Statist., vol. 32, no. 2, pp. 407-499, 2004.
-
(2004)
Ann. Statist
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
6
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, and T. Poggio, "Regularization theory and neural networks architectures," Neural Comput., vol. 7, pp. 219-269, 1995.
-
(1995)
Neural Comput
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
7
-
-
32044449925
-
Generalized cross-validation as a method for choosing a good ridge parameter
-
G. H. Golub, M. Heath, and G. Wahba, "Generalized cross-validation as a method for choosing a good ridge parameter," Technometrics, vol. 21, pp. 215-223, 1979.
-
(1979)
Technometrics
, vol.21
, pp. 215-223
-
-
Golub, G.H.1
Heath, M.2
Wahba, G.3
-
9
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, no. 1, pp. 55-82, 1970.
-
(1970)
Technometrics
, vol.12
, Issue.1
, pp. 55-82
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
10
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G. R. G. Lanckriet, N. Cristianini, P. Bartlett, M. I. Jordan, and L. El Ghaoui, "Learning the kernel matrix with semidefinite programming," J. Mach. Learn. Res., vol. 5, pp. 27-72, 2004.
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
Jordan, M.I.4
El Ghaoui, L.5
-
11
-
-
34248636137
-
Primal-dual kernel machines,
-
Ph.D. dissertation, Faculty Eng, K. U. Leuven, Leuven, Belgium
-
K. Pelckmans, "Primal-dual kernel machines," Ph.D. dissertation, Faculty Eng., K. U. Leuven, Leuven, Belgium, 2005.
-
(2005)
-
-
Pelckmans, K.1
-
12
-
-
33644990982
-
Additive regularization trade-off: Fusion of training and validation levels in kernel methods
-
Mar
-
K. Pelckmans, J. A. K. Suykens, and B. De Moor, "Additive regularization trade-off: Fusion of training and validation levels in kernel methods," Mach. Learn., vol. 62, no. 3, pp. 217-252, Mar. 2006.
-
(2006)
Mach. Learn
, vol.62
, Issue.3
, pp. 217-252
-
-
Pelckmans, K.1
Suykens, J.A.K.2
De Moor, B.3
-
13
-
-
34248672468
-
-
K. Pelckmans, J. A. K. Suykens, and B. De Moor, ESAT-SISTA, K. U. Leuven, A convex approach to learning the ridge based on CV, Leuven, Belgium, Tech. Rep. 05-216, 2005.
-
K. Pelckmans, J. A. K. Suykens, and B. De Moor, ESAT-SISTA, K. U. Leuven, "A convex approach to learning the ridge based on CV," Leuven, Belgium, Tech. Rep. 05-216, 2005.
-
-
-
-
14
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
C. Saunders, A. Gammerman, and V. Vovk, "Ridge regression learning algorithm in dual variables," in Proc. 15th Int. Conf. Mach. Learn. (ICML), 1998, pp. 515-521.
-
(1998)
Proc. 15th Int. Conf. Mach. Learn. (ICML)
, pp. 515-521
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
16
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
J. A. K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle, "Weighted least squares support vector machines: Robustness and sparse approximation," Neurocomput., vol. 48, no. 1-4, pp. 85-105, 2002.
-
(2002)
Neurocomput
, vol.48
, Issue.1-4
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
17
-
-
0037695279
-
-
Singapore: World Scientific
-
J. A. K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vandewalle, Least Squares Support Vector Machines. Singapore: World Scientific, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
18
-
-
0001287271
-
Regression shrinkage and selection via the LASSO
-
R. J. Tibshirani, "Regression shrinkage and selection via the LASSO," J. Roy. Statist. Soc., vol. 58, pp. 267-288, 1996.
-
(1996)
J. Roy. Statist. Soc
, vol.58
, pp. 267-288
-
-
Tibshirani, R.J.1
-
21
-
-
84898975239
-
Limits of spectral clustering
-
L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press
-
U. von Luxburg, O. Bousquet, and M. Belkin, "Limits of spectral clustering," in Advances in Neural Information Processing Systems (NIPS), L. K. Saul, Y. Weiss, and L. Bottou, Eds. Cambridge, MA: MIT Press, 2005, vol. 17.
-
(2005)
Advances in Neural Information Processing Systems (NIPS)
, vol.17
-
-
von Luxburg, U.1
Bousquet, O.2
Belkin, M.3
|