-
1
-
-
3242735552
-
Longest increasing subsequences in sliding windows
-
Albert M.H., Golynski A., Hamel A.M., López-Ortiz A., Srinivasa Rao S., and Ali Safari M. Longest increasing subsequences in sliding windows. Theoret. Comput. Sci. 321 2-3 (2004) 405-414
-
(2004)
Theoret. Comput. Sci.
, vol.321
, Issue.2-3
, pp. 405-414
-
-
Albert, M.H.1
Golynski, A.2
Hamel, A.M.3
López-Ortiz, A.4
Srinivasa Rao, S.5
Ali Safari, M.6
-
2
-
-
38249005044
-
New clique and independent set algorithms for circle graphs (Discrete Appl. Math. 36 (1992) 1-24)
-
Apostolico A., Atallah M.J., and Hambrusch S.E. New clique and independent set algorithms for circle graphs (Discrete Appl. Math. 36 (1992) 1-24). Discrete Appl. Math. 41 2 (1993) 179-180
-
(1993)
Discrete Appl. Math.
, vol.41
, Issue.2
, pp. 179-180
-
-
Apostolico, A.1
Atallah, M.J.2
Hambrusch, S.E.3
-
3
-
-
0034325359
-
Enumerating longest increasing subsequences and patience sorting
-
Bespamyatnikh S., and Segal M. Enumerating longest increasing subsequences and patience sorting. Inf. Process. Lett. 76 1-2 (2000) 7-11
-
(2000)
Inf. Process. Lett.
, vol.76
, Issue.1-2
, pp. 7-11
-
-
Bespamyatnikh, S.1
Segal, M.2
-
4
-
-
0032057912
-
Maximum k-chains in planar point sets: Combinatorial structure and algorithms
-
Felsner S., and Wernisch L. Maximum k-chains in planar point sets: Combinatorial structure and algorithms. SIAM J. Comput. 28 1 (1998) 192-209
-
(1998)
SIAM J. Comput.
, vol.28
, Issue.1
, pp. 192-209
-
-
Felsner, S.1
Wernisch, L.2
-
5
-
-
0003638065
-
On computing the length of longest increasing subsequences
-
Fredman M.~L. On computing the length of longest increasing subsequences. Discrete Math. 11 (1975) 29-35
-
(1975)
Discrete Math.
, vol.11
, pp. 29-35
-
-
Fredman, M.L.1
-
6
-
-
34248343969
-
-
M.R. Henzinger, P. Raghavan, S. Rajagopalon, Computing on data streams, Technical Report 1998-011, Digital Equipment Corporation, Systems Research Center, May 1998
-
-
-
-
8
-
-
34248339780
-
-
David Liben-Nowell, Erik Vee, An Zhu, Finding longest increasing and common subsequences in streaming data. Technical Report MIT-LCS-931, Cambridge, MA 02139, November 2003
-
-
-
-
9
-
-
0001259916
-
Longest increasing and decreasing subsequences
-
Schensted C. Longest increasing and decreasing subsequences. Canadian J. Math. (1961)
-
(1961)
Canadian J. Math.
-
-
Schensted, C.1
-
11
-
-
0002484064
-
Preserving order in a forest in less than logarithmic time and linear space
-
van Emde Boas P. Preserving order in a forest in less than logarithmic time and linear space. Inf. Process. Lett. 6 3 (1977) 80-82
-
(1977)
Inf. Process. Lett.
, vol.6
, Issue.3
, pp. 80-82
-
-
van Emde Boas, P.1
-
12
-
-
0041592535
-
Alignment of blast high-scoring segment pairs based on the longest increasing subsequence algorithm
-
Zhang H. Alignment of blast high-scoring segment pairs based on the longest increasing subsequence algorithm. Bioinformatics 19 11 (2003) 1391-1396
-
(2003)
Bioinformatics
, vol.19
, Issue.11
, pp. 1391-1396
-
-
Zhang, H.1
|