메뉴 건너뛰기




Volumn 188, Issue 2, 2007, Pages 1955-1962

Global existence and asymptotic behavior for a fractional differential equation

Author keywords

Exponential decay; Fractional derivative; Polynomial source; Positive definite function; Weakly singular kernel

Indexed keywords

BOUNDARY VALUE PROBLEMS; POLYNOMIAL APPROXIMATION; PROBLEM SOLVING;

EID: 34248222563     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2006.11.105     Document Type: Article
Times cited : (24)

References (19)
  • 1
    • 34248208464 scopus 로고    scopus 로고
    • Blow up for the wave equation with a fractional damping
    • Alaimia M.R., and Tatar N.-e. Blow up for the wave equation with a fractional damping. J. Appl. Anal. 11 1 (2005) 133-144
    • (2005) J. Appl. Anal. , vol.11 , Issue.1 , pp. 133-144
    • Alaimia, M.R.1    Tatar, N.-e.2
  • 2
    • 3242716912 scopus 로고
    • Global existence and asymptotic stability for a nonlinear integrodifferential equation modeling heat flow
    • Brandon D. Global existence and asymptotic stability for a nonlinear integrodifferential equation modeling heat flow. SIAM J. Math. Anal. 22 (1991) 72-106
    • (1991) SIAM J. Math. Anal. , vol.22 , pp. 72-106
    • Brandon, D.1
  • 4
    • 0031270541 scopus 로고    scopus 로고
    • On a fractional partial differential equation with dominating linear part
    • Gripenberg G., Londen S.O., and Prüss J. On a fractional partial differential equation with dominating linear part. Math. Meth. Appl. Sci. 20 (1997) 1427-1448
    • (1997) Math. Meth. Appl. Sci. , vol.20 , pp. 1427-1448
    • Gripenberg, G.1    Londen, S.O.2    Prüss, J.3
  • 5
    • 0011603759 scopus 로고
    • The Cauchy problem in one-dimensional nonlinear viscoelasticity
    • Hrusa W.J., and Nohel J.A. The Cauchy problem in one-dimensional nonlinear viscoelasticity. J. Diff. Eqs. 59 (1985) 388-412
    • (1985) J. Diff. Eqs. , vol.59 , pp. 388-412
    • Hrusa, W.J.1    Nohel, J.A.2
  • 6
    • 0006912068 scopus 로고
    • A model equation for viscoelasticity with a strongly singular kernel
    • Hrusa W.J., and Renardy M. A model equation for viscoelasticity with a strongly singular kernel. SIAM J. Math. Anal. 19 2 (1988) 257-269
    • (1988) SIAM J. Math. Anal. , vol.19 , Issue.2 , pp. 257-269
    • Hrusa, W.J.1    Renardy, M.2
  • 7
    • 0037229854 scopus 로고    scopus 로고
    • Exponential growth for a fractionally damped wave equation
    • Kirane M., and Tatar N.-e. Exponential growth for a fractionally damped wave equation. Zeit. Anal. Anw. (J. Anal. Appl.) 22 1 (2003) 167-177
    • (2003) Zeit. Anal. Anw. (J. Anal. Appl.) , vol.22 , Issue.1 , pp. 167-177
    • Kirane, M.1    Tatar, N.-e.2
  • 9
    • 0000683386 scopus 로고
    • Frequency domain methods for Volterra equations
    • Nohel J.A., and Shea D.F. Frequency domain methods for Volterra equations. Adv. Math. 22 (1976) 278-304
    • (1976) Adv. Math. , vol.22 , pp. 278-304
    • Nohel, J.A.1    Shea, D.F.2
  • 10
    • 51649189214 scopus 로고
    • Saddle points and instability on nonlinear hyperbolic equations
    • Payne L., and Sattinger D.H. Saddle points and instability on nonlinear hyperbolic equations. Israel J. Math. 22 (1975) 273-303
    • (1975) Israel J. Math. , vol.22 , pp. 273-303
    • Payne, L.1    Sattinger, D.H.2
  • 11
    • 0010038374 scopus 로고    scopus 로고
    • Global stability of a fractional partial differential equation
    • Petzeltova H., and Prüss J. Global stability of a fractional partial differential equation. J. Int. Eqs. Appl. 12 3 (2000) 323-347
    • (2000) J. Int. Eqs. Appl. , vol.12 , Issue.3 , pp. 323-347
    • Petzeltova, H.1    Prüss, J.2
  • 14
    • 0000886834 scopus 로고
    • On global solutions for nonlinear hyperbolic equations
    • Sattinger D.H. On global solutions for nonlinear hyperbolic equations. Arch. Rational Mech. Anal. 30 (1968) 148-172
    • (1968) Arch. Rational Mech. Anal. , vol.30 , pp. 148-172
    • Sattinger, D.H.1
  • 15
    • 0000561994 scopus 로고
    • On a nonlinear hyperbolic Volterra equations
    • Staffans O. On a nonlinear hyperbolic Volterra equations. SIAM J. Math. Anal 11 (1980) 793-812
    • (1980) SIAM J. Math. Anal , vol.11 , pp. 793-812
    • Staffans, O.1
  • 16
    • 0344549781 scopus 로고    scopus 로고
    • A wave equation with fractional damping
    • Tatar N.-e. A wave equation with fractional damping. Zeit. Anal. Anw. (J. Anal. Appl.) 22 3 (2003) 1-10
    • (2003) Zeit. Anal. Anw. (J. Anal. Appl.) , vol.22 , Issue.3 , pp. 1-10
    • Tatar, N.-e.1
  • 17
    • 3242668227 scopus 로고    scopus 로고
    • The decay rate for a fractional differential equations
    • Tatar N.-e. The decay rate for a fractional differential equations. J. Math. Anal. Appl. 295 (2004) 303-314
    • (2004) J. Math. Anal. Appl. , vol.295 , pp. 303-314
    • Tatar, N.-e.1
  • 18
    • 25644446044 scopus 로고    scopus 로고
    • A blow up result for a fractionally damped wave equation
    • Tatar N.-e. A blow up result for a fractionally damped wave equation. Nonl. Diff. Eqs. Appl. (NoDEA) 12 2 (2005) 215-226
    • (2005) Nonl. Diff. Eqs. Appl. (NoDEA) , vol.12 , Issue.2 , pp. 215-226
    • Tatar, N.-e.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.