-
1
-
-
0000561456
-
Complete Nevanlinna-Pick kernels
-
Agler J., and McCarthy J.E. Complete Nevanlinna-Pick kernels. J. Funct. Anal. 175 1 (2000) 111-124
-
(2000)
J. Funct. Anal.
, vol.175
, Issue.1
, pp. 111-124
-
-
Agler, J.1
McCarthy, J.E.2
-
2
-
-
0242339400
-
A theorem of Beurling-Lax type for Hilbert spaces of functions analytic in the unit ball
-
Alpay D., Dijksma A., and Rovnyak J. A theorem of Beurling-Lax type for Hilbert spaces of functions analytic in the unit ball. Integral Equations Operator Theory 47 3 (2003) 251-274
-
(2003)
Integral Equations Operator Theory
, vol.47
, Issue.3
, pp. 251-274
-
-
Alpay, D.1
Dijksma, A.2
Rovnyak, J.3
-
3
-
-
5844297152
-
Theory of reproducing kernels
-
Aronszajn N. Theory of reproducing kernels. Trans. Amer. Math. Soc. 68 (1950) 337-404
-
(1950)
Trans. Amer. Math. Soc.
, vol.68
, pp. 337-404
-
-
Aronszajn, N.1
-
4
-
-
0011570277
-
Completing matrix contractions
-
Arsene G., and Gheondea A. Completing matrix contractions. J. Operator Theory 7 1 (1982) 179-189
-
(1982)
J. Operator Theory
, vol.7
, Issue.1
, pp. 179-189
-
-
Arsene, G.1
Gheondea, A.2
-
5
-
-
0000326360
-
*-algebras. III. Multivariable operator theory
-
*-algebras. III. Multivariable operator theory. Acta Math. 181 2 (1998) 159-228
-
(1998)
Acta Math.
, vol.181
, Issue.2
, pp. 159-228
-
-
Arveson, W.1
-
7
-
-
34248205031
-
-
J.A. Ball, V. Bolotnikov, Q. Fang, Multivariable backward-shift invariant subspaces and observability operators, Multidimens. Systems Signal Process., in press
-
-
-
-
8
-
-
34248209515
-
-
J.A. Ball, V. Bolotnikov, Q. Fang, Schur-class multipliers on the Fock space: de Branges-Rovnyak reproducing kernel spaces and transfer-function realizations, in: Teberiu Constantinescu Memorial Volume, Theta, Bucharest, in press
-
-
-
-
9
-
-
34248183951
-
-
J.A. Ball, V. Bolotnikov, Q. Fang, Schur-class multipliers on the Arveson space: de Branges-Rovnyak reproducing kernel spaces and commutative transfer-function realizations, preprint
-
-
-
-
10
-
-
0002730245
-
Interpolation and commutant lifting for multipliers on reproducing kernels Hilbert spaces
-
Operator Theory and Analysis. Bart H., Gohberg I., and Ran A.C.M. (Eds), Birkhäuser, Basel
-
Ball J.A., Trent T.T., and Vinnikov V. Interpolation and commutant lifting for multipliers on reproducing kernels Hilbert spaces. In: Bart H., Gohberg I., and Ran A.C.M. (Eds). Operator Theory and Analysis. Operator Theory vol. 122 (2001), Birkhäuser, Basel 89-138
-
(2001)
Operator Theory
, vol.122
, pp. 89-138
-
-
Ball, J.A.1
Trent, T.T.2
Vinnikov, V.3
-
11
-
-
15344345409
-
Formal reproducing kernel Hilbert spaces: The commutative and noncommutative settings
-
Reproducing Kernel Spaces and Applications. Alpay D. (Ed), Birkhäuser, Basel
-
Ball J.A., and Vinnikov V. Formal reproducing kernel Hilbert spaces: The commutative and noncommutative settings. In: Alpay D. (Ed). Reproducing Kernel Spaces and Applications. Operator Theory vol. 143 (2003), Birkhäuser, Basel 77-134
-
(2003)
Operator Theory
, vol.143
, pp. 77-134
-
-
Ball, J.A.1
Vinnikov, V.2
-
12
-
-
33746041488
-
Functional models for representations of the Cuntz algebra
-
Operator Theory, System Theory and Scattering Theory: Multidimensional Generalizations. Alpay D., and Vinnikov V. (Eds), Birkhäuser, Basel
-
Ball J.A., and Vinnikov V. Functional models for representations of the Cuntz algebra. In: Alpay D., and Vinnikov V. (Eds). Operator Theory, System Theory and Scattering Theory: Multidimensional Generalizations. Operator Theory vol. 157 (2005), Birkhäuser, Basel 1-60
-
(2005)
Operator Theory
, vol.157
, pp. 1-60
-
-
Ball, J.A.1
Vinnikov, V.2
-
15
-
-
33646367632
-
Characteristic function for polynomially contractive commuting tuples
-
Bhattacharyya T., and Sarkar J. Characteristic function for polynomially contractive commuting tuples. J. Math. Anal. Appl. 321 1 (2006) 242-259
-
(2006)
J. Math. Anal. Appl.
, vol.321
, Issue.1
, pp. 242-259
-
-
Bhattacharyya, T.1
Sarkar, J.2
-
16
-
-
0002894745
-
Canonical models in quantum scattering theory
-
Wilcox C. (Ed), Holt, Rinehart and Winston, New York
-
de Branges L., and Rovnyak J. Canonical models in quantum scattering theory. In: Wilcox C. (Ed). Perturbation Theory and Its Applications in Quantum Mechanics (1966), Holt, Rinehart and Winston, New York 295-392
-
(1966)
Perturbation Theory and Its Applications in Quantum Mechanics
, pp. 295-392
-
-
de Branges, L.1
Rovnyak, J.2
-
18
-
-
0000355024
-
Norm-preserving dilations and their applications to optimal error bounds
-
Davis C., Kahan W.M., and Weinberger H.F. Norm-preserving dilations and their applications to optimal error bounds. SIAM J. Numer. Anal. 19 3 (1982) 445-469
-
(1982)
SIAM J. Numer. Anal.
, vol.19
, Issue.3
, pp. 445-469
-
-
Davis, C.1
Kahan, W.M.2
Weinberger, H.F.3
-
19
-
-
0000806935
-
Finitely generated ideals in Banach algebras
-
Gleason A.M. Finitely generated ideals in Banach algebras. J. Math. Mech. 13 (1964) 125-132
-
(1964)
J. Math. Mech.
, vol.13
, pp. 125-132
-
-
Gleason, A.M.1
-
20
-
-
0000075303
-
On a quotient norm and the Sz.-Nagy-Foias lifting theorem
-
Parrott S. On a quotient norm and the Sz.-Nagy-Foias lifting theorem. J. Funct. Anal. 30 3 (1978) 311-328
-
(1978)
J. Funct. Anal.
, vol.30
, Issue.3
, pp. 311-328
-
-
Parrott, S.1
-
21
-
-
38249008191
-
A note on Parrott's strong theorem
-
Timotin D. A note on Parrott's strong theorem. J. Math. Anal. Appl. 171 1 (1992) 288-293
-
(1992)
J. Math. Anal. Appl.
, vol.171
, Issue.1
, pp. 288-293
-
-
Timotin, D.1
|