메뉴 건너뛰기




Volumn 190, Issue 1-3, 2007, Pages 199-203

Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network

Author keywords

Artificial neural networks; Cutting forces; Face milling; Stellite 6

Indexed keywords

ALGORITHMS; FEEDFORWARD CONTROL; MACHINABILITY; MILLING (MACHINING); NEURAL NETWORKS;

EID: 34248164412     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmatprotec.2007.02.045     Document Type: Article
Times cited : (69)

References (30)
  • 1
    • 0025514553 scopus 로고
    • The microstructure and galling wear of a laser-melted cobalt-base hardfacing alloy
    • Agarwal S.C., and Ocken H. The microstructure and galling wear of a laser-melted cobalt-base hardfacing alloy. Wear 140 (1990) 223-233
    • (1990) Wear , vol.140 , pp. 223-233
    • Agarwal, S.C.1    Ocken, H.2
  • 4
    • 34248181885 scopus 로고    scopus 로고
    • S. Aykut, The investigation of effects of machinability on chip removal parameters for face milling of cobalt-based superalloy steels, Marmara University Institute of Science & Technology, Ph.D. Thesis, 2005.
  • 5
    • 0031233012 scopus 로고    scopus 로고
    • Microstructure and phase analyses of Stellite plus 6 wt.% Mo alloy
    • Kuzucu V., Ceylan M., Celik H., and Aksoy I. Microstructure and phase analyses of Stellite plus 6 wt.% Mo alloy. J. Maler. Process. Technol. 69 (1997) 257-263
    • (1997) J. Maler. Process. Technol. , vol.69 , pp. 257-263
    • Kuzucu, V.1    Ceylan, M.2    Celik, H.3    Aksoy, I.4
  • 6
    • 0032644980 scopus 로고    scopus 로고
    • Localized behaviour of powder metallurgy processed cobalt-based alloy Stellite 6 in chloride environments
    • Mohamed K.E., Gad M.M.A., Nassef A.E., and El-Sayed A.W. Localized behaviour of powder metallurgy processed cobalt-based alloy Stellite 6 in chloride environments. Z. Metallkd. 90 (1999) 195-201
    • (1999) Z. Metallkd. , vol.90 , pp. 195-201
    • Mohamed, K.E.1    Gad, M.M.A.2    Nassef, A.E.3    El-Sayed, A.W.4
  • 7
    • 0033509101 scopus 로고    scopus 로고
    • Influence of the relative positions of tool and workpiece on tool life, tool wear and surface in the face milling process
    • Diniz A.E., and Filho J.C. Influence of the relative positions of tool and workpiece on tool life, tool wear and surface in the face milling process. Wear 232 (1999) 67-75
    • (1999) Wear , vol.232 , pp. 67-75
    • Diniz, A.E.1    Filho, J.C.2
  • 8
    • 0004251244 scopus 로고    scopus 로고
    • Cambridge University Press, USA pp. 5-6
    • Alti{dotless}ntaş Y. Manufacturing Automation (2000), Cambridge University Press, USA pp. 5-6
    • (2000) Manufacturing Automation
    • Altintaş, Y.1
  • 9
    • 0036497703 scopus 로고    scopus 로고
    • A chip formation based analytic force model for oblique cutting
    • Bezce C.E., and Elbestawi M.A. A chip formation based analytic force model for oblique cutting. Int. J. Mach. Tools Manuf. 42 (2002) 529-538
    • (2002) Int. J. Mach. Tools Manuf. , vol.42 , pp. 529-538
    • Bezce, C.E.1    Elbestawi, M.A.2
  • 10
    • 0018531984 scopus 로고
    • Microstructure, an application of mathematical programming to metal cutting
    • Philipson R.H., and Ravindram A. Microstructure, an application of mathematical programming to metal cutting. Math. Program Stud. 11 (1979) 116-134
    • (1979) Math. Program Stud. , vol.11 , pp. 116-134
    • Philipson, R.H.1    Ravindram, A.2
  • 11
    • 0018480697 scopus 로고
    • A discrete variable approach to machine parameter optimization
    • Hayes G.M., and Davis R.P. A discrete variable approach to machine parameter optimization. IIE Trans. 11 (1979) 155-159
    • (1979) IIE Trans. , vol.11 , pp. 155-159
    • Hayes, G.M.1    Davis, R.P.2
  • 12
    • 33746891232 scopus 로고    scopus 로고
    • A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (stellite 6)
    • Baǧci{dotless} E., and Aykut S. A study of Taguchi optimization method for identifying optimum surface roughness in CNC face milling of cobalt-based alloy (stellite 6). Int. J. Adv. Manuf. Technol. 29 (2006) 940-947
    • (2006) Int. J. Adv. Manuf. Technol. , vol.29 , pp. 940-947
    • Baǧci, E.1    Aykut, S.2
  • 13
    • 0013414835 scopus 로고    scopus 로고
    • Selection of cutting conditions and tool flow in flexible manufacturing system
    • Cus F., and Balic J. Selection of cutting conditions and tool flow in flexible manufacturing system. Int. J. Manuf. Sci. Technol. 2 (2000) 101-106
    • (2000) Int. J. Manuf. Sci. Technol. , vol.2 , pp. 101-106
    • Cus, F.1    Balic, J.2
  • 14
    • 0014894089 scopus 로고
    • Optimization in tool engineering using geometric programming
    • Phillips D.T., and Beightler C.S. Optimization in tool engineering using geometric programming. AIIE Trans. 2 (1970) 355-360
    • (1970) AIIE Trans. , vol.2 , pp. 355-360
    • Phillips, D.T.1    Beightler, C.S.2
  • 15
    • 0035799803 scopus 로고    scopus 로고
    • Optimisation of cutting conditions in machining of aluminium matrix composites using a numerical and experimental model
    • Paulo Davim J., and Antonio C.A.C. Optimisation of cutting conditions in machining of aluminium matrix composites using a numerical and experimental model. J. Mater. Process. Technol. 112 (2001) 78-82
    • (2001) J. Mater. Process. Technol. , vol.112 , pp. 78-82
    • Paulo Davim, J.1    Antonio, C.A.C.2
  • 17
    • 0037804668 scopus 로고    scopus 로고
    • Machinability data representation with artificial neural network
    • Wong S.V., and Hamouda A.M.S. Machinability data representation with artificial neural network. J. Mater. Process. Technol. 138 (2003) 538-544
    • (2003) J. Mater. Process. Technol. , vol.138 , pp. 538-544
    • Wong, S.V.1    Hamouda, A.M.S.2
  • 18
    • 0037328671 scopus 로고    scopus 로고
    • Optimization of cutting conditions during cutting by using neural networks
    • Zuperl U., and Cus F. Optimization of cutting conditions during cutting by using neural networks. Rob. Comput. Integr. Manuf. 19 (2003) 189-199
    • (2003) Rob. Comput. Integr. Manuf. , vol.19 , pp. 189-199
    • Zuperl, U.1    Cus, F.2
  • 19
    • 22944469411 scopus 로고    scopus 로고
    • Optimization of CNC ball end milling: a neural network-based model
    • El-Mounayri H., Kishawy H., and Briceno J. Optimization of CNC ball end milling: a neural network-based model. J. Mater. Process. Technol. 166 (2005) 50-62
    • (2005) J. Mater. Process. Technol. , vol.166 , pp. 50-62
    • El-Mounayri, H.1    Kishawy, H.2    Briceno, J.3
  • 20
    • 20444464409 scopus 로고    scopus 로고
    • Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network
    • Ezugwua E.O., Fadarea D.A., Bonneya J., Da Silvaa R.B., and Salesa W.F. Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. Int. J. Mach. Tools Manuf. 45 (2005) 1375-1385
    • (2005) Int. J. Mach. Tools Manuf. , vol.45 , pp. 1375-1385
    • Ezugwua, E.O.1    Fadarea, D.A.2    Bonneya, J.3    Da Silvaa, R.B.4    Salesa, W.F.5
  • 21
    • 1642335673 scopus 로고    scopus 로고
    • A study of tool life in hot machining using artificial neural networks and regression analysis method
    • Tosun N., and Özler L. A study of tool life in hot machining using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 124 (2002) 99-104
    • (2002) J. Mater. Process. Technol. , vol.124 , pp. 99-104
    • Tosun, N.1    Özler, L.2
  • 22
    • 0342855329 scopus 로고    scopus 로고
    • Multimilling-insert wear assessment using non-linear virtual sensor, time-frequency distribution and neural networks
    • James LI C., and Tzeng T.C. Multimilling-insert wear assessment using non-linear virtual sensor, time-frequency distribution and neural networks. Mech. Syst. Signal Process. 14 6 (2000) 945-957
    • (2000) Mech. Syst. Signal Process. , vol.14 , Issue.6 , pp. 945-957
    • James LI, C.1    Tzeng, T.C.2
  • 23
    • 0036686815 scopus 로고    scopus 로고
    • Intelligent tool path generation for milling of free surfaces using neural networks
    • Balic J., and Korosec M. Intelligent tool path generation for milling of free surfaces using neural networks. Int. J. Mach. Tools Manuf. 42 (2002) 1171-1179
    • (2002) Int. J. Mach. Tools Manuf. , vol.42 , pp. 1171-1179
    • Balic, J.1    Korosec, M.2
  • 25
    • 0031235710 scopus 로고    scopus 로고
    • Neural network solutions to the tool condition monitoring problem in metal cutting-a critical review of methods
    • Dimla D.E., Lister P.M., and Leightont N.J. Neural network solutions to the tool condition monitoring problem in metal cutting-a critical review of methods. Int. J. Mach. Tools Manuf. 9 (1997) 1219-1241
    • (1997) Int. J. Mach. Tools Manuf. , vol.9 , pp. 1219-1241
    • Dimla, D.E.1    Lister, P.M.2    Leightont, N.J.3
  • 26
    • 34248201514 scopus 로고    scopus 로고
    • ISO 8688-1 Tool Life Testing in Milling, Part I, Face Milling, first ed., 1989.
  • 27
    • 34248190629 scopus 로고    scopus 로고
    • Matlab Version 6.5, Online Manual.
  • 28
    • 0035372175 scopus 로고    scopus 로고
    • New approach to dynamic modeling of vapour-compression liquid chillers: artificial neural networks
    • Bechtler H., Browne M.W., Bansal P.K., and Kecman V. New approach to dynamic modeling of vapour-compression liquid chillers: artificial neural networks. Appl. Energy 21 (2001) 941-953
    • (2001) Appl. Energy , vol.21 , pp. 941-953
    • Bechtler, H.1    Browne, M.W.2    Bansal, P.K.3    Kecman, V.4
  • 30
    • 1942498767 scopus 로고    scopus 로고
    • Comment on "Modeling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artificial neural network" by K. Genel et al. [Mater. Sci. Eng. A 363 (2003) 203]
    • Sha W. Comment on "Modeling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artificial neural network" by K. Genel et al. [Mater. Sci. Eng. A 363 (2003) 203]. Mater. Sci. Eng. A 372 (2004) 334-335
    • (2004) Mater. Sci. Eng. A , vol.372 , pp. 334-335
    • Sha, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.