-
1
-
-
0037044683
-
A classification of accessible categories
-
Adámek J., Borceux F., Lack S., and Rosický J. A classification of accessible categories. J. Pure Appl. Algebra 175 1-3 (2002) 7-30
-
(2002)
J. Pure Appl. Algebra
, vol.175
, Issue.1-3
, pp. 7-30
-
-
Adámek, J.1
Borceux, F.2
Lack, S.3
Rosický, J.4
-
3
-
-
0010699326
-
The closure of a class of colimits
-
Albert M.H., and Kelly G.M. The closure of a class of colimits. J. Pure Appl. Algebra 51 1-2 (1988) 1-17
-
(1988)
J. Pure Appl. Algebra
, vol.51
, Issue.1-2
, pp. 1-17
-
-
Albert, M.H.1
Kelly, G.M.2
-
4
-
-
84971155378
-
On product-preserving Kan extensions
-
Borceux F., and Day B.J. On product-preserving Kan extensions. Bull. Austral. Math. Soc. 17 2 (1977) 247-255
-
(1977)
Bull. Austral. Math. Soc.
, vol.17
, Issue.2
, pp. 247-255
-
-
Borceux, F.1
Day, B.J.2
-
5
-
-
34247887225
-
-
B. Chorny, W.G. Dwyer, Homotopy theory of small diagrams over large categories. Preprint
-
-
-
-
6
-
-
0002234303
-
On closed categories of functors
-
Reports of the Midwest Category Seminar, IV, Springer, Berlin
-
Day B. On closed categories of functors. Reports of the Midwest Category Seminar, IV. Lecture Notes in Mathematics vol. 137 (1970), Springer, Berlin 1-38
-
(1970)
Lecture Notes in Mathematics
, vol.137
, pp. 1-38
-
-
Day, B.1
-
7
-
-
0001451711
-
Several new concepts: Lucid and concordant functors, pre-limits, pre-completeness, the continuous and concordant completions of categories
-
Springer, Berlin
-
Freyd P. Several new concepts: Lucid and concordant functors, pre-limits, pre-completeness, the continuous and concordant completions of categories. Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, WA, 1968, Vol. Three) (1969), Springer, Berlin 196-241
-
(1969)
Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, WA, 1968, Vol. Three)
, pp. 196-241
-
-
Freyd, P.1
-
10
-
-
0001814006
-
Structures defined by finite limits in the enriched context. I
-
Kelly G.M. Structures defined by finite limits in the enriched context. I. Cah. Topol. Géom. Différ. 23 1 (1982) 3-42
-
(1982)
Cah. Topol. Géom. Différ.
, vol.23
, Issue.1
, pp. 3-42
-
-
Kelly, G.M.1
-
11
-
-
34247867735
-
Basic concepts of enriched category theory
-
Electronic. Originally published as LMS Lecture Notes 64, 1982
-
Kelly G.M. Basic concepts of enriched category theory. Repr. Theory Appl. Categ. 10 (2005) vi+137 Electronic. Originally published as LMS Lecture Notes 64, 1982
-
(2005)
Repr. Theory Appl. Categ.
, Issue.10
-
-
Kelly, G.M.1
-
12
-
-
34250075642
-
Finite-product-preserving functors, Kan extensions and strongly-finitary 2-monads
-
Kelly G.M., and Lack S. Finite-product-preserving functors, Kan extensions and strongly-finitary 2-monads. Appl. Categ. Structures 1 1 (1993) 85-94
-
(1993)
Appl. Categ. Structures
, vol.1
, Issue.1
, pp. 85-94
-
-
Kelly, G.M.1
Lack, S.2
-
13
-
-
0010737488
-
V-Cat is locally presentable or locally bounded if V is so
-
Kelly G.M., and Lack S. V-Cat is locally presentable or locally bounded if V is so. Theory Appl. Categ. 8 (2001) 555-575
-
(2001)
Theory Appl. Categ.
, vol.8
, pp. 555-575
-
-
Kelly, G.M.1
Lack, S.2
-
14
-
-
34247875743
-
Enriched categories and enriched modules
-
Lindner H. Enriched categories and enriched modules. Cah. Topol. Géom. Différ. 22 2 (1981) 161-174
-
(1981)
Cah. Topol. Géom. Différ.
, vol.22
, Issue.2
, pp. 161-174
-
-
Lindner, H.1
-
15
-
-
0033615449
-
Cartesian closed exact completions
-
Rosický J. Cartesian closed exact completions. J. Pure Appl. Algebra 142 3 (1999) 261-270
-
(1999)
J. Pure Appl. Algebra
, vol.142
, Issue.3
, pp. 261-270
-
-
Rosický, J.1
|