-
1
-
-
0032607562
-
Efficient testing of large graphs
-
IEEE
-
N. Alon, E. Fischer, M. Krivelevich, M. Szegedy, Efficient testing of large graphs, Proc. 40th Ann. Symp. on Found. of Comp. Sci. IEEE (1999), 656-666.
-
(1999)
Proc. 40th Ann. Symp. on Found. of Comp. Sci
, pp. 656-666
-
-
Alon, N.1
Fischer, E.2
Krivelevich, M.3
Szegedy, M.4
-
2
-
-
0034360832
-
Efficient testing of large graphs
-
N. ALON, E. FISCHER, M. KRIVELEVICH, M. SZEGEDY, Efficient testing of large graphs, Combinatorica 20 (2000), 451-476.
-
(2000)
Combinatorica
, vol.20
, pp. 451-476
-
-
ALON, N.1
FISCHER, E.2
KRIVELEVICH, M.3
SZEGEDY, M.4
-
3
-
-
0142123181
-
Random sampling and approximation of MAX-CSPs
-
N. ALON, W. FERNANDEZ DE LA VEGA, R. KANNAN, M. KARPINSKI, Random sampling and approximation of MAX-CSPs, J. Comput. System Sci. 67 (2003), 212-243.
-
(2003)
J. Comput. System Sci
, vol.67
, pp. 212-243
-
-
ALON, N.1
FERNANDEZ DE LA VEGA, W.2
KANNAN, R.3
KARPINSKI, M.4
-
4
-
-
4544310407
-
Approximating the cut-norm via Grothendieck's inequality
-
ACM STOC ACM Press
-
N. ALON, A. NAOR, Approximating the cut-norm via Grothendieck's inequality, Proc. of the 36 ACM STOC ACM Press (2004), 72-80.
-
(2004)
Proc. of the 36
, pp. 72-80
-
-
ALON, N.1
NAOR, A.2
-
5
-
-
34848872557
-
Every monotone graph property is testable
-
Baltimore, ACM Press
-
N. ALON, A. SHAPIRA, Every monotone graph property is testable, Proc. of the 37 ACM STOC, Baltimore, ACM Press (2005), 128-137.
-
(2005)
Proc. of the 37 ACM STOC
, pp. 128-137
-
-
ALON, N.1
SHAPIRA, A.2
-
6
-
-
33748583768
-
A characterization of the (natural) graph properties testable with one-sided error
-
IEEE
-
N. ALON, A. SHAPIRA, A characterization of the (natural) graph properties testable with one-sided error, Proc. of the 46 IEEE FOCS, IEEE (2005), 429-438.
-
(2005)
Proc. of the 46 IEEE FOCS
, pp. 429-438
-
-
ALON, N.1
SHAPIRA, A.2
-
7
-
-
84924119443
-
Unique limits of dense graph sequences
-
manuscript
-
C. BORGS, J. CHAYES, L. LOVÁSZ, Unique limits of dense graph sequences, manuscript.
-
-
-
BORGS, C.1
CHAYES, J.2
LOVÁSZ, L.3
-
8
-
-
34247572926
-
Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing
-
manuscript
-
C. BORGS, J. CHAYES, L. LOVÁSZ, V.T. SÓS, K. VESZTERGOMBI, Convergent sequences of dense graphs I: Subgraph frequencies, metric properties and testing, manuscript.
-
-
-
BORGS, C.1
CHAYES, J.2
LOVÁSZ, L.3
SÓS, V.T.4
VESZTERGOMBI, K.5
-
10
-
-
0040942625
-
Quick approximation to matrices and applications
-
A. FRIEZE, R. KANNAN, Quick approximation to matrices and applications, Combinatorica 19 (1999), 175-220.
-
(1999)
Combinatorica
, vol.19
, pp. 175-220
-
-
FRIEZE, A.1
KANNAN, R.2
-
11
-
-
33751440264
-
The sparse regularity lemma and its applications
-
B.S. Webb, ed, Cambridge Univ. Press
-
S. GERKE, A. STEGER, The sparse regularity lemma and its applications, in "Surveys in Combinatorics" (B.S. Webb, ed.), Cambridge Univ. Press (2005), 227-258.
-
(2005)
Surveys in Combinatorics
, pp. 227-258
-
-
GERKE, S.1
STEGER, A.2
-
12
-
-
0032108275
-
Property testing and its connection to learning and approximation
-
O. GOLDREICH, S. GOLDWASSER, D. RON, Property testing and its connection to learning and approximation, J. ACM 45 (1998), 653-750.
-
(1998)
J. ACM
, vol.45
, pp. 653-750
-
-
GOLDREICH, O.1
GOLDWASSER, S.2
RON, D.3
-
13
-
-
0031285884
-
Lower bounds of tower type for Szemerédi's uniformity lemma, GAFA
-
W.T. GOWERS, Lower bounds of tower type for Szemerédi's uniformity lemma, GAFA, Geom. func. Anal. 7 (1997), 322-337.
-
(1997)
Geom. func. Anal
, vol.7
, pp. 322-337
-
-
GOWERS, W.T.1
-
14
-
-
11144339501
-
Hypergraph regularity and the multidimensional Szemeredi theorem
-
manuscript
-
W.T. GOWERS, Hypergraph regularity and the multidimensional Szemeredi theorem, manuscript.
-
-
-
GOWERS, W.T.1
-
15
-
-
34247641155
-
-
Y. KOHAYAKAWA, V. RÖDL, Szemeŕdi's regularity lemma and quasi-randomness, in Recent Advances in Algorithms and Combinatorics, CMS Books Math./Ouvrages Math. SMC 11, Springer, New York (2003), 289-351.
-
Y. KOHAYAKAWA, V. RÖDL, Szemeŕdi's regularity lemma and quasi-randomness, in "Recent Advances in Algorithms and Combinatorics", CMS Books Math./Ouvrages Math. SMC 11, Springer, New York (2003), 289-351.
-
-
-
-
16
-
-
34247560191
-
-
J. KOMLÓS, M. SIMONOVITS, Szemerédi's regularity lemma and its applications in graph theory, in Combinatorics, Paul Erdos is Eighty (D. Miklos, et al., eds.), Bolyai Society Mathematical Studies 2 (1996), 295-352.
-
J. KOMLÓS, M. SIMONOVITS, Szemerédi's regularity lemma and its applications in graph theory, in "Combinatorics, Paul Erdos is Eighty (D. Miklos, et al., eds.), Bolyai Society Mathematical Studies 2 (1996), 295-352.
-
-
-
-
17
-
-
33645156020
-
Limits of dense graph sequences
-
L. LOVÁSZ, B. SZEGEDY, Limits of dense graph sequences, MSR Tech. Report; ftp://ftp.research.microsoft.com/pub/tr/TR-2004-79. pdf
-
MSR Tech. Report
-
-
LOVÁSZ, L.1
SZEGEDY, B.2
-
18
-
-
34247556451
-
Testing properties of graphs and functions
-
manuscript
-
L. LOVÁSZ, B. SZEGEDY, Testing properties of graphs and functions, manuscript.
-
-
-
LOVÁSZ, L.1
SZEGEDY, B.2
-
21
-
-
34247646477
-
-
lemma revisited, preprint;
-
T.C. TAO, Szemerédi's regularity lemma revisited, preprint; http://arxiv.org/abs/math.CO/0504472
-
Szemerédi's regularity
-
-
TAO, T.C.1
|