-
1
-
-
0042290834
-
-
For a recent review, see:, Domcke, W, Yarkony, D. R, Koppel, H. Eds, World Scientific: Singapore
-
(a) For a recent review, see: Migani, A. and Olivucci, M. In Conical Intersections. Electronic Structure, Dynamics and Spectroscopy, Domcke, W., Yarkony, D. R., Koppel, H. Eds.; World Scientific: Singapore, 2004.
-
(2004)
Conical Intersections. Electronic Structure, Dynamics and Spectroscopy
-
-
Migani, A.1
Olivucci, M.2
-
6
-
-
0242417585
-
-
See, for example a
-
See, for example (a) Migani, A.; Robb, M. A.; Olivucci, M. J. Am. Chem. Soc. 2003, 125, 2804-2808.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 2804-2808
-
-
Migani, A.1
Robb, M.A.2
Olivucci, M.3
-
7
-
-
2542510730
-
-
(b) Frutos, L. M.; Sancho, U.; Castaño, O. Org. Lett. 2004, 6, 1229-1231.
-
(2004)
Org. Lett
, vol.6
, pp. 1229-1231
-
-
Frutos, L.M.1
Sancho, U.2
Castaño, O.3
-
8
-
-
1642407639
-
-
(c) Cembran, A.; Bernardi, F.; Garavelli, M.; Gagliardi, L.; Orlandi, G. J. Am. Chem. Soc. 2004, 126, 3234-3243.
-
(2004)
J. Am. Chem. Soc
, vol.126
, pp. 3234-3243
-
-
Cembran, A.1
Bernardi, F.2
Garavelli, M.3
Gagliardi, L.4
Orlandi, G.5
-
11
-
-
84980136516
-
-
(b) Bischof, P.; Gleiter, R.; Haider, R. Angew. Chem., Int. Ed. Engl. 1977, 16, 110.
-
(1977)
Angew. Chem., Int. Ed. Engl
, vol.16
, pp. 110
-
-
Bischof, P.1
Gleiter, R.2
Haider, R.3
-
12
-
-
0001058463
-
-
(c) Kanda, K.; Koremoro, T.; Imamura, A. Tetrahedron 1986, 42, 4169.
-
(1986)
Tetrahedron
, vol.42
, pp. 4169
-
-
Kanda, K.1
Koremoro, T.2
Imamura, A.3
-
13
-
-
34247612874
-
-
A total of 8e, 8MO has been chosen for the active space, corresponding to 4e, 4MO for the two double bonds (n Orbitals) and 4e, 4MO (two first HOMOs and two first LUMOs) for the central cyclobutane ring (a orbitals).
-
A total of 8e, 8MO has been chosen for the active space, corresponding to 4e, 4MO for the two double bonds (n Orbitals) and 4e, 4MO (two first HOMOs and two first LUMOs) for the central cyclobutane ring (a orbitals).
-
-
-
-
14
-
-
34247631580
-
-
2 respectively. The corresponding eigenvectors, which were all orthogonal to the gradient, give the direction of energy decrease within a second order approximation for the PES around the FC geometry on Si.
-
2 respectively. The corresponding eigenvectors, which were all orthogonal to the gradient, give the direction of energy decrease within a second order approximation for the PES around the FC geometry on Si.
-
-
-
-
15
-
-
34247647970
-
-
These five directions provide a five-dimensional subspace of energy decreases in a second order approximation, while the orthogonal force (i.e, minus energy gradient) vector provides a first-order decrease in the energy. Therefore, any linear combination of these six vectors gives a six-order dimensional subspace of potential energy decrease within first- and second-order expansion of the PES
-
These five directions provide a five-dimensional subspace of energy decreases in a second order approximation, while the orthogonal force (i.e., minus energy gradient) vector provides a first-order decrease in the energy. Therefore, any linear combination of these six vectors gives a six-order dimensional subspace of potential energy decrease within first- and second-order expansion of the PES.
-
-
-
-
16
-
-
34247641125
-
-
8).
-
8).
-
-
-
-
17
-
-
34247568340
-
-
20 MEPs in So were computed for every CI, taking as initial direction to follow the corresponding 20 equally spaced vectors (0.1π radians) belonging to the plane defined by the gradient difference (GD) and derivative coupling (DC) vectors of each CI.
-
20 MEPs in So were computed for every CI, taking as initial direction to follow the corresponding 20 equally spaced vectors (0.1π radians) belonging to the plane defined by the gradient difference (GD) and derivative coupling (DC) vectors of each CI.
-
-
-
-
18
-
-
34247582782
-
-
Unless the experimentally observed photoproducts (SBV and COT in an approximate ratio of 1:2) are involved, the formation of structural isomers of COT which rapidly isomerize to COT is not excluded, even at temperatures as low as -60 °C. See ref 4
-
Unless the experimentally observed photoproducts (SBV and COT in an approximate ratio of 1:2) are involved, the formation of structural isomers of COT which rapidly isomerize to COT is not excluded, even at temperatures as low as -60 °C. See ref 4.
-
-
-
-
19
-
-
34247592899
-
-
The BR intermediate on Si has biradical character, but with a contribution from a tetraradical form
-
The BR intermediate on Si has biradical character, but with a contribution from a tetraradical form.
-
-
-
-
20
-
-
0000284309
-
-
(a) Cheng, A. K.; Anet, F. A. L.; Mioduski, J.; Meinwald, J. J. Am. Chem. Soc. 1974, 96, 2887.
-
(1974)
J. Am. Chem. Soc
, vol.96
, pp. 2887
-
-
Cheng, A.K.1
Anet, F.A.L.2
Mioduski, J.3
Meinwald, J.4
-
21
-
-
0034674307
-
-
Castano, O.; Frutos, L.-M.; Palmeiro, R.; Notario, R.; Andres, J.-L.; Gomperts, R.; Blancafort, L.; Robb, M. A. Angew. Chem., Int. Ed. 2000, 39, 2095.
-
(b) Castano, O.; Frutos, L.-M.; Palmeiro, R.; Notario, R.; Andres, J.-L.; Gomperts, R.; Blancafort, L.; Robb, M. A. Angew. Chem., Int. Ed. 2000, 39, 2095.
-
-
-
-
22
-
-
0030834306
-
-
(c) Jiao, H. J.; Nagelkerke, R.; Kurtz, H. A.; Williams, R. V.; Borden, W. T.; Schleyer, P. V. J. Am. Chem. Soc. 1997, 119, 5921.
-
(1997)
J. Am. Chem. Soc
, vol.119
, pp. 5921
-
-
Jiao, H.J.1
Nagelkerke, R.2
Kurtz, H.A.3
Williams, R.V.4
Borden, W.T.5
Schleyer, P.V.6
-
23
-
-
34247629405
-
-
15.
-
15.
-
-
-
-
24
-
-
34247594256
-
-
By performing MEP computations in the intersection subspace with a standard conical intersection optimization algorithm as implemented in the Gaussian suite of programs. See ref 18, CIM has been located from CI1 and CI2
-
By performing MEP computations in the intersection subspace (with a standard conical intersection optimization algorithm as implemented in the Gaussian suite of programs. See ref 18), CIM has been located from CI1 and CI2.
-
-
-
-
25
-
-
34247633495
-
-
By a domain of a stationary CI (i.e, vanishing gradient in the intersection space) we mean a continuous subspace of CIs in which the stationary CI is included. This implies that, for every CI point of this subspace, a MEP exists in the intersection space that connects that point to the stationary CI
-
By a domain of a stationary CI (i.e., vanishing gradient in the intersection space) we mean a continuous subspace of CIs in which the stationary CI is included. This implies that, for every CI point of this subspace, a MEP exists in the intersection space that connects that point to the stationary CI.
-
-
-
-
26
-
-
0035901653
-
-
(a) Garavelli, M.; Bernardi, F.; Moliner, V.; Olivucci, M. Angew. Chem., Int. Ed. 2001, 40, 1466.
-
(2001)
Angew. Chem., Int. Ed
, vol.40
, pp. 1466
-
-
Garavelli, M.1
Bernardi, F.2
Moliner, V.3
Olivucci, M.4
-
27
-
-
0037146062
-
-
(b) Garavelli, M.; Bernardi, F.; Cembran, A.; Castaño, O.; Frutos, L. M.; Merchán, M.; Olivucci, M. J. Am. Chem. Soc. 2002, 124, 13770.
-
(2002)
J. Am. Chem. Soc
, vol.124
, pp. 13770
-
-
Garavelli, M.1
Bernardi, F.2
Cembran, A.3
Castaño, O.4
Frutos, L.M.5
Merchán, M.6
Olivucci, M.7
-
28
-
-
34247599279
-
-
Calculations were made with: Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Zakrzewski, V. G, Montgomery, J. A, Jr, Stratman, R. E, Burant, J. C, Dapprich, Millam, S. J. M, Daniels, A. D, Kudin, K. N, Strain, M. C, Farkas, O, Tomasi, J, Barone, V, Cossi, M, Cammi, R, Menucci, B, Pomelli, C, Adamo, C, Clifford, S, Ochterski, J, Petersson, G. A, Ayala, P. Y, Cui, Q, Morokuma, K, Malick, D. K, Rabuck, A; Raghavachari, D. K, Foresman, J. B, Cioslowski, J, Ortiz, J. V, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Gomperts, R, Martin, R. L, Fox, D. J, Keith, T, Al-Laham, M. A, Peng, C. Y, Nanayakkara, A, Gonzalez, C, Challacombe, M, Gill, P. M. W, Johnson, B. G, Chen, W, Wong, M. W, Andres, J. L, Gonzalez, C, Head-Gordon, M, Replogle, E. S, Pople, J. A. Gaussian 98, Revsion A.7; Gaussian, Inc, Pittsburgh PA, 1998
-
Calculations were made with: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratman, R. E.; Burant, J. C.; Dapprich, Millam, S. J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Menucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A; Raghavachari, D. K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revsion A.7; Gaussian, Inc.: Pittsburgh PA, 1998.
-
-
-
-
29
-
-
34247565509
-
-
Calculation were made with: Andersson, K, Barysz, M, Bernhardsson, A, Blomberg, M. R. A, Carissan, Y, Cooper, D. L, Fülscher, M. P, Gagliardi, L, de Graaf, C, Hess, B. A, Hagberg, D, Karlström, G, Lindh, R, Malmqvist, Nakajima, P.-Å, T, Neogrády, P, Olsen, J, Raab, J, Roos, B. O, Ryde, U, Schimmelpfennig, B, Schütz, M, Seijo, L, Serrano-Andrés, L, Siegbahn, P. E. M, Stålling, J, Thorsteinsson, T, Veryazov, V, Widmark, P.-O. MOLCAS, version 6; Lund University: Lund, Sweden, 2004
-
Calculation were made with: Andersson, K.; Barysz, M.; Bernhardsson, A.; Blomberg, M. R. A.; Carissan, Y.; Cooper, D. L.; Fülscher, M. P.; Gagliardi, L.; de Graaf, C.; Hess, B. A.; Hagberg, D.; Karlström, G.; Lindh, R.; Malmqvist, Nakajima, P.-Å.; T.; Neogrády, P.; Olsen, J.; Raab, J.; Roos, B. O.; Ryde, U.; Schimmelpfennig, B.; Schütz, M.; Seijo, L.; Serrano-Andrés, L.; Siegbahn, P. E. M.; Stålling, J.; Thorsteinsson, T.; Veryazov, V.; Widmark, P.-O. MOLCAS, version 6; Lund University: Lund, Sweden, 2004.
-
-
-
-
30
-
-
34247571870
-
-
Algorithm taken from: Palmeiro, R. Ph.D. Dissertation, University of Alcala, Spain, 2004.
-
Algorithm taken from: Palmeiro, R. Ph.D. Dissertation, University of Alcala, Spain, 2004.
-
-
-
|